FEBRUARY 2016 EDITION

Guide to...

GAS DETECTION & AIR QUALITY **MONITORING**

\$10usd/ CND

www.critical-environment.com

Our pride is in quality, not quantity.

We are dedicated to manufacturing high quality gas detection systems, including self-contained systems, controllers and transmitters, and indoor air quality (IAQ) portable instruments.

All aspects of product design, development and manufacturing are done in-house. Therefore, we have complete control over the products we manufacture from concept to final assembly.

Our products carry either CSA, UL, CE, BTL, or C-Tick certification or a combination.

Our products are sold worldwide and have a proven track record.

Our products are thoroughly tested and always gas calibrated twice before leaving our facility.

We carry a large inventory of replacement parts, calibration gases and calibration kits.

The way we handle warranty issues, anywhere in the world, is second to none in any industry. We stand behind everything we sell. That's our promise to you!

Our devotion to great service and satisfied customers.

Our skilled team is dedicated to helping you find the right solution to your particular application. To back up what we say, we will be happy to provide customer references to anyone that is interested.

Our passion for innovation.

We design, develop, manufacture, sell, and service an extensive product range of hazardous gas detection systems and indoor air quality portable instruments suited for various types of applications.

Our product knowledge available at your fingertips.

We offer a library of product support documentations for all our products online at www.critical-environment.com. Our informative web site contains product manuals, datasheets, brochures, catalogs, specification sheets, engineering drawings, sample engineering specifications, and much more.

Want to be the first to be notified on updates? Simply visit www.critical-environment.com, subscribe to CETCI Magazine Blog, find us on Facebook, follow us on Twitter: @cetci, connect with us on LinkedIn, connect with us on Flickr, or subscribe to our RSS feed.

ABOUT **CETCI**

Critical Environment Technologies Canada Inc. (CETCI) is a leading global supplier of gas detection systems, including self contained systems, controllers and transmitters, and Indoor Air Quality (IAQ) portable instruments. With ongoing product development, CETCI's instruments are ensured to be leading edge.

CETCI products are sold through a network of authorized distributors around the world.

Applications include commercial, institutional, municipal, and light industrial markets worldwide. Areas of specialization include parking garages, refrigeration plants, commercial swimming pools, water purification, arenas, wineries and breweries, waste water treatment, and many more.

CETCI gas detectors are used to detect many different gases. Some of the most common are carbon monoxide, carbon dioxide, nitrogen dioxide, nitric oxide, ammonia, chlorine, ozone, combustible gases like methane and propane, oxygen, refrigerants and more.

Contents

Overview: Gas Detection	4
Sensor Specification Chart: Portable Indoor Air Quality	6
Quick Application Guide	
Fixed Gas Detection System	18
Portable Indoor Air Quality Monitors	20
Sensor Selection Matrix	
by Application	21
by Product	22
Quick Selection Guide	
Gas Detection Transmitters	24
Portable Indoor Air Quality Monitors	26
Questions to Ask a Customer Looking for Gas Detectors	28
Overview: Product Overview & Datasheet	29

Datasheets

 Gas Detection Controllers PDC Multi-Channel Controller 	32
 Self Contained Gas Detectors GEM-II Multi-Purpose Gas Detector 	36
 Gas Detection Transmitters AST-I Industrial Analog Transmitter AST-IS Carbon Dioxide Transmitter DST Digital Transmitter LPT Economical Transmitter PET BACnet®Transmitter 	44 48 56 60 62
 Accessories Metal Protective Guards 	64
 Portable Indoor Air Quality (IAQ) Monitor YESAIR 8-Channel Air Quality Monitor YES Plus LGA 15-Channel IAQ Monitor YESDUST Affordable Particulate Sensor 	66 68 71
Industry Abbreviations & Product Acronyms	72
Glossary of Terms	74

Glossary of Terms	74
Sensor Mounting Heights & Location	75
Frequently Asked Questions (FAQ)	
Fixed Gas Detection Systems	76
Portable Indoor Air Quality Monitors	80
Product Codes	82

OVERVIEW Gas Detection

Categories of gas detection systems are defined by the technology they use: electrochemical and metal oxide semiconductor technologies generally detect toxic gases and catalytic and infrared sensors detect combustible gases.

ELECTROCHEMICAL

Toxic gas sensors & oxygen sensors

LIFE SPAN

2 - 5 years (sensor type & manufacturer dependent). Oxygen typically 2 years.

SPECIFICITY

Specific to target gas with known cross sensitivity to a small variety of gases.

RANGE

Typically 0 - 1.0 ppm to 0 - 2,000 ppm, sensor dependent.

POISONING / DAMAGING

- Oxygen depravation
- Exposure to high concentrations of solvent vapours
- Very high concentrations of target gas
- Reactive gases
- Environments with high temperatures, low temperatures (freezing)
- Very low levels of relative humidity (less than 10 - 15%)

APPLYING SPAN GAS

- Use span gas with air balance or nitrogen balance
- Flow rate should be a minimum of 0.5 LPM (lighter-than air gases) to a maximum of 1.0 LPM (heavier-than-air gases)
- Do NOT humidify span gas when flowing

SOLID-STATE

Toxic & combustible gas sensors

LIFE SPAN

3 - 8 years (sensor type & manufacturer dependent).

SPECIFICITY

Broad spectrum, non gas specific sensors with a wide range of interfering gases & chemicals.

RANGE

0 - 50% LEL (combustible gases), varies for target toxic gases (typically 0 - 100 ppm to 0 - 2,000 ppm).

POISONING / DAMAGING

High concentrations of target gas, silicon vapours, alkaline metals, salt water spray, environments with extreme temperatures (heat and freezing).

APPLYING SPAN GAS

- Use span gas with air balance ONLY. Nitrogen balance will cause negative sensor response.
- Flow rate should be a minimum of 0.5 LPM to a maximum of 0.75 LPM.
- Span gas MUST be humidified when flowing over sensor.

CATALYTIC

Combustible gas sensors, toxic gas sensors at very high concentrations (% volume)

LIFE SPAN

3 - 8 years (typically if not poisoned)

SPECIFICITY

Specific to combustible gases only in the LEL ranges

RANGE

0 - 100% LEL of target gas

POISONING / DAMAGING

High concentrations of target gas, lead vapours, silicon vapours, alkylated heavy metals.

INFRARED

Toxic & combustible gas sensors

LIFE SPAN

10 years +

SPECIFICITY

Specific to target gas.

RANGE

0 - 1,000 ppm to 0 - 100% volume. Target gas, manufacturer dependent.

POISONING / DAMAGING

No known poisoning agents. Condensing humidity will damage sensor and distort readings.

APPLYING SPAN GAS

- Use span gas with air balance ONLY.
- Flow rate should be a minimum of 0.5 LPM (lighter-than air gases) to a maximum of 1.0 LPM (heavier-than-air gases)
- Do not humidify span gas when flowing

APPLYING SPAN GAS

- Use span gas with air balance or nitrogen balance. Nitrogen balance ONLY for CO, sensors.
- Flow rate should be approximately 0.5 LPM. Some sensors are flow sensitive.
- Do NOT humidify span gas when flowing.

SENSOR SPECIFICATION CHART

Portable Indoor Air Quality

Sensor Target Gas	Sensor Type	Standard Range	Instrument Displayed Resolution	Sensor Resolution	Accuracy	Long Term Drift	Response Time			
Ammonia (NH ₃)	EC	0 - 50 ppm	0.1 ppm (100 ppb)	1 ppm	No Data Available	< 5% / 6 months	t ₉₀ = < 60 seconds calculated fr 5 minute exposure			
Arsine (AsH ₃)	EC	0 - 1 ppm	0.001 ppm (1 ppb)	< 15 ppb @ 20°C (68°F)	No Data Available	< 5% / 6 months	t _∞ = <30 seconds calc fr 2 minute exposure			
	IR				0 - 5,000 ppm	1 ppm	50 ppm fr 0 - 2,500 ppm, then 100 ppm up to FSD	± 2% full scale @ 20°C	± 50 ppm / month @ 20°C (68°F) ambient, (max ± 150 ppm / yr)	t ₉₀ = > 30 seconds @ 20°C (68°F)
xide (C0 ₂)		0 - 10,000 ppm	1 ppm	100 ppm fr 0 - 5,000 ppm, then 200 ppm up to FSD	r (68°F), I bar m, pressure, applied gas 2.5%	± 500 ppm / month @ 20°C (68°F) ambient	t ₉₀ = > 30 seconds @ 20°C (68°F)			
Carbon Dio		0 - 5% volume	0.1% volume	1% of measuring range for		± 500 ppm / month @ 20°C (68°F) ambient	t ₉₀ = > 30 seconds @ 20°C (68°F)			
		0 - 20% volume	0.1% volume	> 50% of range, 0.5% of	No Data Available	± 1% volume / month @ 20°C (68°F) ambient	t ₉₀ = > 30 seconds @ 20°C (68°F)			
		measu range volume 0.01% volume readi volume <50% o	range for readings < 50% of range	No Data Available	± 1% volume / month @ 20°C (68°F) ambient	t ₉₀ = > 30 seconds @ 20°C (68°F)				
Carbon Monoxide (CO)	EC	0 - 50 ppm	1 ppm	0.5 ppm	No Data Available	zero: 0.2 ppm equiv change / yr in clean air. Sensitivity: 3% change / yr in clean air (value based on twice per month test)	t _∞ =< 25 seconds fr 0 - 400 ppm			

Warm Up Time at Switch On	Recommended Calibration Frequency	Operating Temperature	Operating Humidity	Operating Life (Estimated)	Cross Sensitivities
Approx 2 - 2.5 min (warm up delay time)	6 months	0°C to 40°C (32°F to 104°F)	15 - 90% non-condensing	2 yrs	Alcohols @ 1,000 ppm = 0 ppm CO ₂ @ 5,000 ppm = 0 ppm CO @100 ppm = 0 ppm Hydrocarbons @ % range = 0 ppm H ₂ @ 10,000 ppm = 0 ppm H ₂ S @ 20 ppm = 2 ppm Cross sensitivity list not fully completed. Sensor maybe sensitive to other gases.
Approximately 2 - 2.5 min (instrument warm up delay time)	6 months	0°C to 40°C (32°F to 104°F)	20 - 95% non- condensing	1.5 yrs	$\begin{array}{c} \text{CO} @ 85 \text{ ppm} = 0 \text{ ppm} \\ \text{H}_2 @ 3,100 \text{ ppm} = 0 \text{ ppm} \\ \text{NO}, @ 10 \text{ ppm} = 2 \text{ ppm} \\ \text{C}, \text{H}, \text{OH} @ 25,000 \text{ ppm} = 0 \text{ ppm} \\ \text{H}, S @ 18 \text{ ppm} = 10.8 \text{ ppm} \\ \text{SO}, @ 18 \text{ ppm} = 5.4 \text{ ppm} \\ \text{CI}_2 @ 0.85 \text{ ppm} = 0.24 \text{ ppm} \\ \text{HCI} @ 7.8 \text{ ppm} = 1 \text{ ppm} \\ \text{HCI} @ 7.2 \text{ ppm} = 0 \text{ ppm} \\ \text{HCI} @ 12.6 \text{ ppm} = 0.7 \text{ ppm} \\ \text{Si}_{14} @ 4.3 \text{ ppm} = 0.7 \text{ ppm} \\ \text{H}, \text{Se} @ 0.8 \text{ ppm} = 0.24 \text{ ppm} \\ \text{H}_{5} @ 0.8 \text{ ppm} = 0.24 \text{ ppm} \\ \text{H}_{5} @ 0.2 \text{ ppm} = 0.24 \text{ ppm} \\ \text{Ph}_{3} @ 0.2 \text{ ppm} = 0.24 \text{ ppm} \\ \text{Ph}_{3} @ 0.2 \text{ ppm} = 0.24 \text{ ppm} \end{array}$
Approx 2 - 2.5 min (warm up delay time)	2 yrs, 1 yr for best accuracy	0°C to 50°C (32°F to 122°F)	0 - 95% non-condensing	5 - 10 yrs	None
Approx 2 - 2.5 min (warm up delay time)	2 yrs, 1 yr for best accuracy	0°C to 50°C (32°F to 122°F)	0 - 95% non-condensing	5 - 10 yrs	None
Approx 2 - 2.5 min (warm up delay time)	2 yrs, 1 yr for best accuracy	0°C to 50°C (32°F to 122°F)	0 - 95% non-condensing	5 - 10 yrs	None
Approx 2 - 2.5 min (warm up delay time)	2 yrs, 1 yr for best accuracy	0°C to 50°C (32°F to 122°F)	0 - 95% non-condensing	5 - 10 yrs	None
Approx 2 - 2.5 min (warm up delay time)	2 yrs, 1 yr for best accuracy	0°C to 50°C (32°F to 122°F)	0 - 95% non-condensing	5 - 10 yrs	None
Approximately 2 - 2.5 min (instrument warm up delay time)	6 months	0°C to 50°C (32°F to 122°F)	15 - 90% non-condensing	2 - 3 yrs	$\begin{array}{c} H_{2} & \& @ 20 \ ppm = < 0.1 \ ppm \\ NO_{2} & @ 10 \ ppm = < 0.1 \ ppm \\ Q_{2} & @ 10 \ ppm = < 0.1 \ ppm \\ NO & @ 50 \ ppm = < 5 \ ppm \\ SO_{2} & @ 20 \ ppm = < 0.1 \ ppm \\ H_{2} & @ 20^{\circ}C \ (68^{\circ}F) & @ 400 \ ppm = < 60 \ ppm \\ C_{2} H_{4} & @ 400 \ ppm = < 25 \ ppm \\ NH_{3} & @ 20 \ ppm = < .01 \ ppm \end{array}$

SENSOR SPECIFICATION CHART

Portable Indoor Air Quality

Sensor Target Gas	Sensor Type	Standard Range	Instrument Displayed Resolution	Sensor Resolution	Accuracy	Long Term Drift	Response Time
Carbon Monoxide (CO)	EC (for use in H ₂ back- ground enviro- ment)	0 - 50 ppm	1 ppm	0.5 ppm	No Data Available	zero: 0.2 ppm equivalent change / yr in clean air. Sensitivity: 3% change / yr in clean air (value based on twice per month test)	t ₉₀ = < 30 seconds
Chlorine (Cl ₂)	EC	0 - 5 ppm	0.1 ppm (100 ppb)	0.02 ppm	No Data Available	zero: < 0.2 ppm equivalent change / yr in clean air with monthly test. Sensitivity: < 0.4 ppm change / month in clean air with 2X / monthly test	t _∞ = < 40 seconds fr 0 - 5ppm
Chlorine Dioxide (Cl0 ₂)	EC	0 - 1 ppm	0.01 ppm (10 ppb)	0.02 ppm	No Data Available	< 5% / 6 months	$t_{s_0} = < 20$ seconds calc fr 2 minute exposure time $t_{s_0} = < 120$ sec calc fr 2 minute exposure
tibles	CAT Pellistor	0 - 100% LEL	1% LEL	1% LEL	No Data Available	Minimal	t ₅₀ = < 10 seconds
Combust	IR	0 - 5% vol CH ₄	0.1% volume	1% vol CH_4	No Data Available	± 1% FSD / mth @ 20°C (68°F) ambient, (max ± 3% of full scale / yr)	t ₉₀ = <30 seconds @ 20°C (68°F) ambient
Ethylene (C ₂ H ₄)	EC	0 - 500 ppm	1 ppm	1 ppm	No Data Available	< 5% / month	$t_{_{90}} \!=\! < 100$ seconds
Ethylene Oxide (C ₂ H ₄ 0)	EC	0 - 20 ppm	0.1 ppm (100 ppb)	0.1 ppm	No Data Available	< 5% signal loss / yr	t ₉₀ = < 120 seconds

Warm Up Time at Switch On	Recommended Calibration Frequency	Operating Temperature	Operating Humidity	Operating Life (Estimated)	Cross Sensitivities
Approximately 2 - 2.5 min (instrument warm up delay time)	6 months	0°C to 50°C (32°F to 122°F)	15 - 90% non-condensing	2 - 3 yrs	$\begin{array}{l} H_2 @ 900 \mbox{ ppm in } 900 \mbox{ ppm } CO @ 10^{\circ}C \\ (50^{\circ}F) = < 2 \mbox{ ppm } \\ H_2 @ 900 \mbox{ ppm in } 900 \mbox{ ppm } CO @ 20^{\circ}C \\ (68^{\circ}F) = < 4 \mbox{ ppm } \\ H_2 @ 900 \mbox{ ppm in } 900 \mbox{ ppm } CO @ 30^{\circ}C \\ (86^{\circ}F) = < 6 \mbox{ ppm } \\ NO_2 @ 10 \mbox{ ppm } = < 0.1 \mbox{ ppm } \\ CI_2 @ 10 \mbox{ ppm } = < 0.1 \mbox{ ppm } \\ NO_2 @ 20 \mbox{ ppm } = < 0.1 \mbox{ ppm } \\ SO_2 @ 20 \mbox{ ppm } = < 0.1 \mbox{ ppm } \\ SO_2 @ 20 \mbox{ ppm } = < 30 \mbox{ ppm } \\ NH_3 @ 20 \mbox{ ppm } = < 0.1 \mbox{ ppm } \\ \end{array}$
Approximately 2 - 2.5 min (instrument warm up delay time)	6 months	0°C to 40°C (32°F to 104°F)	15 - 90% non-condensing	2 - 2.5 yrs	$\begin{array}{l} H_{2}S @ 20 \ ppm = < -40 \ ppm \\ NO_{2} @ 10ppm = 100 \ ppm \\ NO @ 50 \ ppm = < 0.5 \ ppm \\ SO_{2} @ 20 \ ppm = < -2.5 \ ppm \\ CO @ 400 \ ppm = < 0.1 \ ppm \\ H_{2} @ 400 \ ppm = < 0.1 \ ppm \\ C_{2}H_{4} @ 400 \ ppm = < 0.1 \ ppm \end{array}$
Approximately 2 - 2.5 min (instrument warm up delay time)	6 months	0°C to 40°C (32°F to 104°F)	15 - 95% non- condensing	2 yrs	Alcohols @ 1,000 ppm = 0 ppm CO @ 100 ppm = 0 ppm Cl_2 @ 1ppm = 0.6 ppm O_3 @ 0.25 ppm = 0.7 ppm H_2 @ 3,000 ppm = 0 ppm H_2 S @ 20 ppm = -5 ppm
Approximately 2 - 2.5 min (instrument warm up delay time)	1 yr for best performance	0°C to 40°C (32°F to 104°F)	10 - 90% non- condensing	5 yrs +	Responds to most flammable gases & vapours
Approximately 2 - 2.5 min (instrument warm up delay time)	1 yr	0°C to 50°C (32°F to 122°F)	0 - 95% non-condencing	5 - 10 yrs	None
Approximately 2 - 2.5 min (instrument warm up delay time)	6 months	0°C to 50°C (32°F to 122°F)	15 - 90% non- condensing	2 - 3 yrs	CO = < 60%
Approximately 2 - 2.5 min (instrument warm up delay time)	6 months	0°C to 50°C (32°F to 122°F)	15 - 90% non- condensing	2 - 3 yrs	Ethanol $\approx 55\%$ Toluene $\approx 20\%$ Methyl-ethyl-ketone $\approx 10\%$ C0 $\approx 40\%$

SENSOR SPECIFICATION CHART

Portable Indoor Air Quality

Sensor Target Gas	Sensor Type	Standard Range	Instrument Displayed Resolution	Sensor Resolution	Accuracy	Long Term Drift	Response Time
Fluorine (F ₂)	EC	0 - 2 ppm	0.01 ppm (10 ppb)	< 0.02 ppm @ 20°C (68°F)	No Data Available	< 5% / month	$t_{y_0} = < 80$ seconds calc fr 4 minute exposure with 1 ppm Cl ₂
Formaldehyde (CH ₂ 0) (<i>ref note 4</i>)	EC	0 - 10 ppm	0.01ppm (10 ppb)	0.01 ppm	No Data Available	< 2% signal loss / month	t ₅₀ = < 80 seconds
Hydrogen (H ₂)	EC	0 - 2,000 ppm	1 ppm	2 ppm	No Data Available	< 2% / months	t _{yo} = < 90 seconds
Hydorgen Chloride (HCl)	EC	0 - 30 ppm	0.1 ppm (100 ppb)	< 0.7 ppm @ 20°C (68°F)	No Data Available	< 3% / month	t _∞ = < 70 seconds calc fr 4 minute exposure

Warm Up Time at Switch On	Recommended Calibration Frequency	Operating Temperature	Operating Humidity	Operating Life (Estimated)	Cross Sensitivities
Approximately 2 - 2.5 min (instrument warm up delay time)	6 months	0°C to 40°C (32°F to 104°F)	15 - 90% non- condensing	1.5 - 2 yrs	Alcohols @ 1,000 ppm = 0 ppm AsH ₃ @ 0.2 ppm = -0.03 ppm B = yes; n/d CO ₂ @ 5,000 ppm = 0 ppm CQ @ 100 ppm = 0 ppm CJ ₂ @ 1 ppm = 1.4 ppm B ₂ H ₆ @ 0.25 ppm = -0.01 ppm Hydrocarbons @ % range = 0 ppm HCI @ 5 ppm = -7 ppm H ₂ @ 10,000 ppm = 0 ppm HCN @ 1 ppm = -0.05 ppm H ₂ @ 10,000 ppm = 0 ppm N ₂ @ 10 ppm = 2 ppm N ₂ @ 10 ppm = 8 ppm O ₃ @ 0.25 ppm = 0.3 ppm PH ₃ @ 0.3 ppm = approx0.1 ppm; n/d SO ₂ @ 20 ppm = -0.2 ppm
Approximately 2 - 2.5 min (instrument warm up delay time)	6 months	0°C to 50°C (32°F to 122°F)	15 - 90% non- condensing	2 - 3 yrs in air	$H_2 = 1 - 3\%$ CO = 10 - 18% Interference from other reducing gases such as alcohol.
Approximately 2 - 2.5 min (instrument warm up delay time)	6 months	0°C to 50°C (32°F to 122°F)	15 - 90% non- condensing	2 yrs +	C0 @ 300 ppm = \leq 60 ppm H ₂ S @ 15 ppm = $<$ 3 ppm S0 ₂ @ 5 ppm = 0 ppm N0 @ 35 ppm = 0 ppm N0 ₂ @ 5 ppm = 0 ppm Cl ₂ @ 1 ppm = 0 ppm HCN @ 10 ppm \approx 3 ppm HCl @ 5 ppm = 0 ppm C ₂ H ₄ @ 100 ppm \approx 80 ppm
2 minute Approximately 2 - 2.5 min (instrument warm up delay time)	6 months	0°C to 40°C (32°F to 104°F)	15 - 95% non- condensing	2 yrs	Alcohols @ 1,000 ppm = 0 ppm NH ₃ @ 100 ppm = 0 ppm AsH ₃ @ 0.2 ppm = 0.7 ppm CO ₂ @ 5,000 ppm = 0 ppm CO @ 100 ppm = 0 ppm CI ₂ @ 5 ppm = $< \pm 0.1$ ppm Hydrocarbons @ % range = 0 ppm H ₂ @ 10,000 ppm = 0 ppm HCN @ 20 ppm = 7 ppm H ₂ & 20 ppm = 60 ppm NO @ 100 ppm = 45 ppm N ₂ @ 100 ppm = 45 ppm N ₂ @ 10 ppm = $< \pm 0.5$ ppm PH ₃ @ 0.1 = 0.3 ppm SO ₂ @ 20 ppm = 8 ppm

SENSOR SPECIFICATION CHART

Portable Indoor Air Quality

Sensor Target Gas	Sensor Type	Standard Range	Instrument Displayed Resolution	Sensor Resolution	Accuracy	Long Term Drift	Response Time
Hydrogen Cyanide (HCN)	EC	0 - 30 ppm	0.1 ppm (100 ppb)	0.2 ppm	No Data Available	< 5% / month	t ₉₀ = < 50 seconds calc fr 2 minute exposure
Hydorgen Fluoride (HF)	EC	0 - 10 ppm	0.1 ppm (100 ppb)	0.2 ppm @ 20°C (68°F)	No Data Available	< 10% in 6 months	t _{yo} = < 90 seconds calc fr 4 minute exposure
Hydrogen Sulphide (H ₂ S)	EC	0 - 50 ppm	0.1 ppm (100 ppb)	< 0.05 ppm	No Data Available	Zero: < 0.1 ppm equivalent change / yr in clean air Sensitivity: < 4% change / yr in clean air with monthly test	t ₉₀ = < 25 seconds fr 0 - 20 ppm
Nitrogen Dioxide (NO ₂)	EC	0 - 10 ppm	0.1 ppm (100 ppb)	0.1 ppm	No Data Available	< 2% signal loss / month	t ₃₀ = < 25 seconds
Nitric Oxide (NO)	EC	0 - 100 ppm	0.1 ppm (100 ppb)	< 0.2 ppm	No Data Available	Zero: 0.5 ppm equiv change fr -20°C to 20°C (-4°F to 68°F), 1 - 3 ppm equiv change 20°C to 50°C (68°F to 122°F) Sensitivity: 101 -105% output change @ 50 ppm btw 20°C (68°F) & 50°C (122°F)	t _{so} = < 20 seconds fr 0 - 50 ppm

Warm Up Time at Switch On	Recommended Calibration Frequency	Operating Temperature	Operating Humidity	Operating Life (Estimated)	Cross Sensitivities
2 minute Approximately 2 - 2.5 min (instrument warm up delay time)	6 months	0°C to 40°C (32°F to 104°F)	15 - 95% non- condensing	1.5 - 2 yrs	Alcohols @ 1,000 ppm = 0 ppm CO2 @ 5,000 ppm = 0 ppm CO @ 100 ppm = 0 ppm Hydrocarbons @ % range = 0 ppm H2 @ 10,000 ppm = 0 ppm NO2 @ 100 ppm = -5 ppm NO2 @ 10 ppm = -7 ppm H2 @ 20 ppm = 0 ppm (short gas exposure in minute range; after filter saturation: ca. 40 ppm reading)
2 minute Approximately 2 - 2.5 min (instrument warm up delay time)	6 months	0°C to 40°C (32°F to 104°F)	15 - 90% non- condensing	1.5 yrs +	$\begin{array}{l} C_{1}H_{2}O_{2}\ @\ 100\ ppm\ =\ 100\ ppm\\ Alcohols\ @\ 1,000\ ppm\ =\ 0\ ppm\\ CO_{2}\ @\ 5,000\ ppm\ =\ 0\ ppm\\ CO\ @\ 100\ ppm\ =\ 0\ ppm\\ C_{2}\ @\ 1\ ppm\ =\ 0\ ppm\\ Hydrocarbons\ @\ %\ range\ =\ 0\ ppm\\ Hydrocarbons\ @\ %\ range\ =\ 0\ ppm\\ H_{2}\ @\ 3,000\ ppm\ =\ <\ 1\ ppm\\ HCl\ @\ 10\ ppm\ =\ 6\ ppm\\ SO_{2}\ @\ 20\ ppm\ =\ 16\ ppm\\ \end{array}$
2 minute Approximately 2 - 2.5 min (instrument warm up delay time)	6 months	0°C to 50°C (32°F to 122°F)	15 - 90% non- condensing	2 - 3 yrs	$\begin{split} & \text{NO}_2 @ 10 \text{ ppm} = < -20 \text{ ppm} \\ & \text{CI}_2 @ 10 \text{ ppm} = -25 \text{ ppm} \\ & \text{NO} @ 50 \text{ ppm} = < 4 \text{ ppm} \\ & \text{SO}_2 @ 20 \text{ ppm} = < 10 \text{ ppm} \\ & \text{CO} @ 400 \text{ ppm} = < 1.5 \text{ ppm} \\ & \text{H}_2 @ 400 \text{ ppm} = < 0.2 \text{ ppm} \\ & \text{C}_1^{\text{H}_4} @ 400 \text{ ppm} = < 0.5 \text{ppm} \\ & \text{NH}_3 @ 20 \text{ ppm} = < 0.1 \text{ ppm} \end{split}$
2 minute Approximately 2 - 2.5 min (instrument warm up delay time)	6 months	0°C to 50°C (32°F to 122°F)	15 - 90% non-condensing	2 - 3 yrs	$\begin{array}{l} H_{2}S @ 20 \mbox{ ppm} = < -40 \mbox{ ppm} \\ Cl_{2} @ 10 \mbox{ ppm} = 100 \mbox{ ppm} \\ NO @ 50 \mbox{ ppm} = < 0.5 \mbox{ ppm} \\ SO_{2} @ 20 \mbox{ ppm} = < -2.5 \mbox{ ppm} \\ CO @ 400 \mbox{ ppm} = < 0.1 \mbox{ ppm} \\ H_{2} @ 400 \mbox{ ppm} = < 0.1 \mbox{ ppm} \\ CJ_{4} @ 50 \mbox{ ppm} = < 0.1 \mbox{ ppm} \\ NH_{3} @ 20 \mbox{ ppm} = < 0.1 \mbox{ ppm} \\ CO_{2} @ 5\% \mbox{ volume} = < 0.1 \mbox{ ppm} \end{array}$
2 minute Approximately 2 - 2.5 min (instrument warm up delay time)	6 months	0°C to 50°C (32°F to 122°F)	15 - 90% non- condensing	2 - 3 yrs	$\begin{array}{l} H_{2} S @ 20 \ ppm = < 30 \ ppm \\ NO_{2} @ 50 \ ppm = < 5 \ ppm \\ G_{2} @ 10 \ ppm = < 15 \ ppm \\ SO_{2} @ 20 \ ppm = < 3 \ ppm \\ H_{2} @ 400 \ ppm = < 0.1 \ ppm \\ O @ 400 \ ppm = < 0.1 \ ppm \\ NH_{3} @ 20 \ ppm = < 0.1 \ ppm \\ O_{2} @ 5\% \ volume = < 0.1 \ ppm \end{array}$

SENSOR SPECIFICATION CHART

Portable Indoor Air Quality

Sensor Target Gas	Sensor Type	Standard Range	Instrument Displayed Resolution	Sensor Resolution	Accuracy	Long Term Drift	Response Time
Oxygen (0 ₂)	EC	0 - 25% volume	0.1% volume	0.1% volume	No Data Available	< 1% change in output over 3 months	t ₉₀ = < 15 seconds fr 0 - 20.9%
Ozone (0 ₃)	EC	0 - 1 ppm	0.01 ppm (10 ppb)	< 0.02 ppm @ 20°C (68°F)	No Data Available	< 10% / 6 months @ 20°C (68°F) and 30 - 50% RH	t ₃₀ = < 60 seconds calc fr 3 minute exposure @ 30 cc / min flow
Phosphine (PH ₃)	EC	0 - 5 ppm	0.01 ppm (10 ppb)	Lower detection limit < 30 ppb	No Data Available	< 5% / 6 months	t _{yo} = < 30 seconds
Relative Humidity (RH)	Thin film capacitive	0 - 100% RH	1%	2% RH	No Data Available	2% (±)	< 10 seconds
Silane (SiH _,)	EC	0 - 50 ppm	0.01 ppm (10 ppb)	0.05 ppm	No Data Available	< 5% / 6 months	t _{yo} = < 60 seconds calc fr 2 min exposure

Warm IIn	Docommondod			Operating	
Time at Switch On	Calibration Frequency	Operating Temperature	Operating Humidity	Life (Estimated)	Cross Sensitivities
2 minute Approximately 2 - 2.5 min (instrument warm up delay time)	6 months	0°C to 55°C (32°F to 131°F)	< 0.7% fr 0 - 95% RH @ 40°C (104°F)	2 yrs	CO_2 sensitivity: 0.1% change in O_2 reading per % CO_2 in 5% CO_2
2 minute Approximately 2 - 2.5 min (instrument warm up delay time)	6 months	0°C to 40°C (32°F to 104°F)	15 - 90% non-condensing	1.5 - 2 yrs	Br, I ₂ = yes; n/d CO ₂ @ 5,000 ppm = 0 ppm CO @ 100 ppm = 0 ppm CI ₂ @ 1 ppm = 1.2 ppm CI ₀ @ 1 ppm = 1.5 ppm N ₂ H ₄ @ 3 ppm = -3 ppm H ₂ @ 3,000 ppm = 0 ppm H ₂ S @ 20 ppm = -1.6 ppm N ₂ @ 100% = 0 ppm NO ₂ @ 10ppm = 6 ppm
2 minute Approximately 2 - 2.5 min (instrument warm up delay time)	6 months	0°C to 40°C (32°F to 104°F)	10 - 95% non- condensing	2 yrs	$\begin{array}{c} CO @ 85 \ ppm = 0 \ ppm \\ H_2 @ 3,100 \ ppm = 0 \ ppm \\ NO_2 @ 10 \ ppm = 2 \ ppm \\ C_1 H_2 OH @ 25,000 \ ppm = 0 \ ppm \\ H_2 S @ 18 \ ppm = 13 \ ppm \\ SO_2 @ 18 \ ppm = 6.5 \ ppm \\ C_2 @ 0.85 \ ppm = 0.29 \ ppm \\ HC1 @ 0.85 \ ppm = 0.29 \ ppm \\ HC1 @ 7.8 \ ppm = 1.2 \ ppm \\ HF @ 7.2 \ ppm = 0 \ ppm \\ HS @ 1.2 \ ppm \\ HS @ 1.2 \ ppm \\ SIH_4 @ 4.3 \ ppm = 0.84 \ ppm \\ H_2 Se @ 0.8 \ ppm = 0.29 \ ppm \\ H_2 Se @ 0.8 \ ppm = 0.29 \ ppm \\ HS @ 1.2 \ ppm \\ HS @ 0.2 \ ppm = 0.34 \ ppm \\ H_2 Se @ 0.2 \ ppm = 0.34 \ ppm \\ SH_3 @ 0.2 \ ppm = 0.34 \ ppm \\ SH_3 @ 0.2 \ ppm = 0.16 \ ppm \end{array}$
5 min operational, 20 min max accuracy	1 yr for best performance	0°C to 50°C (32°F to122°F)	N/A	3 yrs +	N/A
2 minute Approximately 2 - 2.5 min (instrument warm up delay time)	6 months	0°C to 40°C (32°F to 104°F)	20 - 95% non- condensing	1.5 yrs	C0 @ 85 ppm = 0 ppm H ₂ @ 3,100 ppm = 0 ppm NO ₂ @ 10 ppm = 2.3 ppm C ₃ H ₃ OH @ 25,000 ppm = 0 ppm H ₂ S @ 18 ppm = 8 ppm SO ₂ @ 18 ppm = 0.1 ppm HCI @ 8 ppm = 0.45 ppm HF @ 7.2 ppm = 0.45 ppm HF @ 7.2 ppm = 0.27 ppm AsH ₃ @ 0.16 ppm = 0.2 ppm H ₂ Se @ 0.8 ppm = 0.27 ppm B ₃ H ₆ @ 0.2 ppm = 0.27 ppm PH ₃ @ 0.2 ppm = 0.35 ppm

SENSOR SPECIFICATION CHART

Portable Indoor Air Quality

Sensor Target Gas	Sensor Type	Standard Range	Instrument Displayed Resolution	Sensor Resolution	Accuracy	Long Term Drift	Response Time
Sulphur Dioxide (S0 ₂)	EC	0 - 20 ppm	0.1 ppm (100 ppb)	< 0.1 ppm	No Data Available	< 2% change / month in clean air	t ₉₀ = < 25 seconds fr 0 - 10 ppm
Temperature	Neg Coefficient Thermistor	-5°C to 55°C (23°F to 131°F)	0.1°C	0.1°C@25°C	No Data Available	0.5°C (±)	< 10 seconds
anic Compounds DC)	DID	0 - 30 ppm	0.01 ppm (10 ppb)	0.02 ppm	No Data Available	No Data Available	t ₉₀ = < 3 seconds
Total Volatile Org; (TV	ΥID	0 - 300 ppm	1 ppm	0.1 ppm (100 ppb)	No Data Available	No Data Available	$t_{_{90}}$ = <3 seconds

Legend:

EC	Electrochemical
SS	Solid State
CAT	Catalytic
IR	Infrared
PID	Photolonization Detector

Additional chemical symbols not defined above:

Br	Bromine
CIF,	Chlorine Trifluoride
C,H,	Acetylene
C,H,O	Isopropyl Alcohol
B,H,	Diborane

Warm Up Time at Switch On	Recommended Calibration Frequency	Operating Temperature	Operating Humidity	Operating Life (Estimated)	Cross Sensitivities
2 minute Approximately 2 - 2.5 min (instrument warm up delay time)	6 months	0°C to 40°C (32°F to 104°F)	15 - 90% non- condensing	2 yrs	$\begin{array}{l} H_{2}S @ 20 \mbox{ ppm} = < 0.1 \\ NO_{2} @ 10 \mbox{ ppm} = < -130 \mbox{ ppm} \\ G_{2} @ 10 \mbox{ ppm} = < -40 \mbox{ ppm} \\ NO @ 50 \mbox{ ppm} = < \pm 2 \mbox{ ppm} \\ CO @ 400 \mbox{ ppm} = < 1.6 \mbox{ ppm} \\ H_{2} @ 400 \mbox{ ppm} = < 0.3 \mbox{ ppm} \\ C_{1}H_{2} @ 400 \mbox{ ppm} = < 40 \mbox{ ppm} \\ NH_{3} @ 20 \mbox{ ppm} = < 0.1 \mbox{ ppm} \end{array}$
5 minute operational, 20 minute max accuracy	1 yr for best performance	0°C to 50°C (32°F to 122°F)	N/A	3 yrs +	N/A
2 minute Approximately 2 - 2.5 min (instrument warm up delay time)	monthly to 4 months (usage dependent)	0°C to 40°C (32°F to 104°F)	0 - 95% non-condensing	5 yrs (excl replacable lamp & electrode stack)	Many chemicals & gases. Refer to manual.
2 minute Approximately 2 - 2.5 min (instrument warm up delay time)	monthly to 4 months (usage dependent)	0°C to 40°C (32°F to 104°F)	0 - 95% non-condensing	5 yrs (excl replacable lamp & electrode stack)	Many chemicals & gases. Refer to manual.

Important Notes:

- Some sensors may be calibrated with correlation gases. If you prefer to have specific sensors calibrated with the target gas, contact our factory for availability and extra costs. Customer will have to bear the cost of the full cylinder of specialty gas plus incoming dangerous goods freight and take ownership of the cylinder of gas remaining.
- These specifications have been developed from data considered accurate at the time. No warranty is implied or suggested based on this data. We accept no responsibility for errors or omissions.
- 3. Critical Environment Technologies Canada Inc. reserves the right to make design and specification changes without prior notice.
- 4. Formaldehyde sensor has high cross sensitivity to Carbon Monoxide, Alcohol & Hydrogen.
- Combustible (flammable) gas sensors (catalytic) can be calibrated for a number of target gases. Please specify the target gas desired & we will evaluate your request.

QUICK APPICATION GUIDE Fixed Gas Detection Systems

Arenas - Ammonia Compressors

GEM-B-N Knowing Before Entering

Hatcheries - Ozone Generators

Ozone (O₃) Leak Detection

Pools - Chlorination Equipment

Parkades - Gas & Diesel Engine Exhaust

Building on Old Landfill Sites

Peace of Mind...

Laboratories & Research Facilities

Repair Shops - Gas & Diesel Engine Exhaust

Wineries & Breweries

QUICK APPICATION GUIDE Portable Indoor Air Quality Monitors

Office Buildings

Breathe easy with...YESAIR Junior

Commercial Pools

Know the Air You're Breathing...YESAIR

Commercial & Residential Buildings

Warehouses - Gas & Diesel Engine Exhaust

 $CO_{2} + CO + NO_{2} + RH + Temperature$

Know the Air You're Breathing...YESAIR

Research Facilities

Know the Air You're Breathing...YES Plus LGA

sensor selection matrix by Application

APPLICATIONS		S	ry Recharging Areas	Rooms	ers	r Rooms	r Air Quality	atories	ng Bays	ng Structures		Stations	e Repair Shops	nouses	ewater Facilities	Treatment Facilities	ies
GAS TYPE	SENSOR TYPE	Arena	Battel	Boiler	Brewi	Chille	Indoo	Labor	Loadi	Parkir	Pools	Pump	Vehicl	Wareł	Waste	Water	Winer
Ammonia (NH ₃)	EC / IR	~			~	~									~	~	✓
Carbon Dioxide (CO ₂)	IR	~			~		~	~			~				~	~	~
Carbon Monoxide (CO)	EC	~		~	✓		√	√	~	~		√	√	√			~
Chlorine (Cl ₂)	EC							√			√	√			√	√	
Combustibles	CAT	~	\checkmark	\checkmark				\checkmark				\checkmark	\checkmark		\checkmark		
Combustibles	SS	✓	\checkmark	\checkmark					\checkmark	✓			\checkmark	\checkmark			
Hydrogen (H ₂)	SS	~	\checkmark										\checkmark				
Hydrogen (H ₂)	CAT	~	\checkmark														
Hydrogen (H ₂)	EC							\checkmark									
Hydrogen Sulphide (H ₂ S)	EC							√				√			√		
Nitrogen Dioxide (NO ₂)	EC	~					√		√	√			√	√			
Ozone (O ₃)	EC							√			√	√				√	
Refrigerants	SS					\checkmark											
Refrigerants	IR					✓											
Sulphur Dioxide (SO ₂)	EC							√				√	√	√		~	
TVOCs	SS						\checkmark										
Legend SS Solid State	EC El	ectroc	hemica	al		CAT	Cat	alvtic			IR	nfrare					

SENSOR SELECTION MATRIX

by Product

FIXED GAS DETECTION SYSTEMS

PRODUCTS	AST-I	AST-IS	DST	LPT	GEM-II	PET
Ammonia (NH ₃₎)			\checkmark			✓
Carbon Monoxide (CO)			\checkmark	\checkmark	\checkmark	\checkmark
Carbon Dioxide (CO ₂)	\checkmark	\checkmark				
Combustible Gases <i>(solid state)</i>			\checkmark		\checkmark	✓
Combustible Gases (catalytic)						
Chlorine (Cl ₂)			\checkmark			
Ethylene (C ₂ H ₄)						\checkmark
Ethylene Oxide (ETO)			\checkmark			
Formaldehyde (CH ₂ 0)						\checkmark
Hydrocarbon Gases (CH ₄)	\checkmark					
Hydrogen (H ₂)			\checkmark			\checkmark
Hydrogen Sulphide (H ₂ S)			\checkmark			
Methane (CH ₄)	\checkmark		\checkmark		\checkmark	\checkmark
Nitrogen Dioxide (NO ₂)			\checkmark	\checkmark	\checkmark	\checkmark
Nitric Oxide (NO)			\checkmark		\checkmark	\checkmark
Nitrious Oxide (N ₂ 0)	\checkmark					
Oxygen (O ₂)			\checkmark		\checkmark	\checkmark
Ozone (O ₃)			\checkmark			
Propane (C ₃ H ₈)	\checkmark		\checkmark		\checkmark	\checkmark
Sulphur Dioxide (SO ₂)			\checkmark		\checkmark	\checkmark
Refrigerants					\checkmark	\checkmark
TVOCs (solid state)						\checkmark
TVOCs (PID)						

PORTABLE INDOOR AIR QUALITY MONITORS

PRODUCTS	YESAIR	YES Plus LGA
Ammonia (NH ₃₎)	\checkmark	\checkmark
Arsine (AsH ₃)	\checkmark	\checkmark
Carbon Monoxide (CO)	✓	\checkmark
Carbon Dioxide (CO ₂)	✓	\checkmark
Combustible Gases (catalytic)	\checkmark	\checkmark
Chlorine (Cl ₂)	✓	\checkmark
Chlorine Dioxide (ClO ₂)	✓	\checkmark
Ethylene (C₂H₄)	✓	\checkmark
Ethylene Oxide (C ₂ H ₄ O)	✓	\checkmark
Fluorine (F ₂)	✓	\checkmark
Formaldehyde (CH ₂ 0)	√	\checkmark
Hydrogen (H ₂)	√	\checkmark
Hydrogen Chloride (HCl)	√	\checkmark
Hydrogen Cyanide (HCN)	√	\checkmark
Hydrogen Fluoride (HF)	✓	\checkmark
Hydrogen Sulphide (H ₂ S)	✓	\checkmark
Nitrogen Dioxide (NO ₂)	√	\checkmark
Nitric Oxide (NO)	√	\checkmark
Oxygen (O ₂)	√	\checkmark
Ozone (O ₃)	√	\checkmark
Particulates (remote)	✓	\checkmark
Phosphine (PH ₃)	✓	\checkmark
Relative Humidity	√	\checkmark
Silane (SiH₄)	✓	\checkmark
Sulphur Dioxide (SO ₂)	✓	\checkmark
Temperature	✓	\checkmark
TVOCs (PID)	✓	\checkmark

QUICK SELECTION GUIDE

Gas Detection Transmitters

		DST				
Features	Single or Dual Sensor	Single				
Available	Remote Sensor	Yes				
Display		No				
Ontinue	Relay	No				
Options Watertight		Yes				
	Splash Guard	Yes				
	Electrochemical	Yes				
Sensor	Solid State	Yes				
Technology	Catalytic	No				
	PID	No				
	Power Requirement	24 VDC supplied by PDC controller				
Electrical	Current Draw	80 - 120 mA				
	Output	Proprietary scaled linear digital signal RS485 communication bus				
	Wiring	Daisy chain config only. 16 - 18 gauge stranded, 4-conductor, shielded				
	Relay	-				
	Fuse	Automatic resetting thermal				
Environmental	Operating Temperature	-20°C to 40°C (-4°F to 104°F)				
Environmental	Humidity	15 - 95% RH non-condensing				
	CSA	No				
	CE	No				
Certifications	UL	No				
	C-Tick	No				
	BTL	No				

Note: All CETCI's instruments consist of RoHS compliant circuit boards.

¹ Watertight: Use optional splash guard to protect sensor from direct water spray.

LPT	PET	GEM-II
Single	Single & Dual	Single & Dual
No	Yes	Yes
No	Yes	Yes
No	No	2 Included
Yes (w/ splash guard) ¹	Yes	Yes
Yes	Yes	Yes
Yes	Yes	Yes
No	Yes	Yes
No	No	No
No	No	No
2-wire mode: 16 - 30 VDC 3-wire mode: 16 - 30 VDC 4-wire mode: 12 - 30 VAC or 16 - 30 VDC	24 VDC	15 - 30 VDC or 12 - 28 VAC
25 mA maximum	30 mA; 90 mA (with display)	Approximately 125 mA
Linear 4 - 20 mA	BACnet® MS / TP up to 76,800 bps MAC address 0 - 127 DIP switch settable.	Linear 4 - 20 mA (single)
VDC two or three conductor shielded; VAC four-conductor shielded	18 gauge, 4-conductor, shielded network wiring (daisy-chained)	VDC three-conductor shielded VAC four-conductor shielded
-	-	Two (2) dry contact SPDT, 5 amps @ 250 V each
Automatic resetting thermal	Automatic resetting thermal	Automatic resetting thermal
-20°C to 40°C (-4°F to 104°F)	Sensor dependant	-20°C to 50°C (-5°F to 120°F)
15 - 90% RH non-condensing	Sensor dependant	15 - 90% RH non-condensing
No	No	Yes
Pending	Pending	No
No	No	Yes
No	Pending	Yes
No	Yes	No

QUICK SELECTION GUIDE

Portable Indoor Air Quality Monitors

		YESAIR		
-	Relative Humidity Sensor	Yes		
Features Available	Temperature Sensor	Yes		
	YESDUST Compatible	Yes		
	Carbon Dioxide (CO ₂)	Yes		
-	Electrochemical	Yes		
Sensor Technology	Catalytic	Yes		
.ceilieley,	Infrared	Yes		
	PID	Yes		
		Alkaline, AA x 3		
	Power Requirement	Rechargeable NiMH battery pack: 8 hours of continuous operation time (dependent upon the sensor array installed)		
	Dicplay	C/W plug-in battery charger / Wall adapter (6 VDC) Backlit, multi-line, alphanumeric ICD display		
Electrical	Resolution	sensor dependent		
	Sampling	Standard: Internal, automatic sample pump for "active" sampling of target environment		
		Optional: Diffusion for quick, direct reading.		
	Memory	Removable Internal SD Flash Card		
	Warm-Up Time	Approximately 3 minutes		
Environmental	Operating Temperature	5°C to 50°C (41°F to 122°F)		
Environmental	Humidity	0% to 95% RH non-condensing		
Certifications	CE	Yes		

Note: All CETCI's instruments consist of RoHS compliant circuit boards.

YES Plus LGA
Yes

Rechargeable NiMH battery pack: 18 - 24 hours of continuous operation time (dependent upon sensor array installed)

c/w plug-in battery charger / wall adapter 12 VDC (100 - 240 VAC; 50 - 60 Hz)

Back-lit, multi-line LCD, alphanumeric display

sensor dependent

Internal, automatic sample pump for "active" sampling of target environment

Removable Internal SD Flash Card

Approximately 3 minutes

5°C to 50°C (41°F to 122°F)

0% to 95% RH non-condensing

No

QUESTSIONS TO ASK

A Customer Looking for Gas Detectors

- 1. Exactly what is your application? Eg. Underground vehicle parking, plant safety, etc. This will help you determine if you need to meet OHS standards and allow you to select the right sensor and controller.
- 2. What is the source of the target gas? *Eg. Vehicle exhaust, containers of stored chemicals, etc.*
- 3. What gas(es) are you wanting to detect?
- 4. Are there any other sources of toxic or combustible gases in the area to be monitored? *This will determine the potential for cross-sensitivty of the toxic sensor and false alarms.*
- 5. Are there extremes of temperature and humidity in the area to be monitored?
- 6. Do you require some type of control? Such as dry relay contacts, analog output signal or quantitative digital display?
- 7. What do you want to do when the sensor detects the presence of unsafe levels of the target gas?
 Eq. Activate exhaust or make-up air fans, activate visual and / or audible alarms, etc.
- 8. Is the target environment indoors or outdoors?
- 9. Is the target environment explosion rated (classified area)?
- 10. What is the size of the area to be monitored?
- 11. Do you prefer a central control panel or smaller self-contained systems?

Product Overview & Datasheet

GAS DETECTION CONTROLLERS

PDC Multi-Channel Controller

- » Up to 32 channels on base controller, expandable to 128 channels
- » RS485 communication with digital transmitters
- » Eight 5-amp SPDT relays
- » Optional analog inputs (up to eight)
- » Optional BACnet® output module

SELF CONTAINED GAS DETECTORS

GEM-II Multi-Purpose Gas Detector

- » Single or dual channel
- » Two 5-amp SPDT relays
- » Integral plug-and-play "smart" sensors or remote sensors
- » 4 20 mA linear output signal

36

GAS DETECTION TRANSMITTERS

AST-I Industrial Analog Transmitter

- » Dual temperature compensated pyroelectric infrared detectors
- » Lower power consumption
- » Target gases include CO., Hydrocarbons (including Methane) & Nitrous Oxide
- » Water / dust tight / corrosion resistant polycarbonate enclosure

32

OVERVIEW

overview Product Overview & Datasheet

PORTABLE INDOOR AIR QUALITY MONITORS

YESAIR Eight Channel Air Quality Monitor

- » 8 sensor capacity
- » > 30 plug & play sensor choices
- » Data logging to SD flash card
- » Lightweight, contoured & comfortable handheld device

68

66

YES Plus LGA Fifteen Channel Air Quality Monitor

- » 15 sensor capacity
- » > 30 plug & play sensor choices
- » Data logging to SD flash card
- » Internal sample pump with inline filter

YESDUST Affordable Particulate Sensor

- » Low cost and long life
- » Quick response and light weight
- » Rechargeable nickel hydride battery pack
- » Real time display on YESAIR or YES Plus LGA LCD

Controllers - GAS DETECTION DATASHEET PDC Multi-Channel Controller

PDC multi-channel controller is a programmable analog or digital controllers designed to handle a large number of remote transmitters and perform a wide range of control functions. The micro-controller based circuit provides the user with an almost unlimited range of configuration possibilities including simple or complex zoning, changing alarm set points, time delays and relay addressing. The PDC controller can accept inputs from up to 8 analog transmitters or can handle up to 128 digital transmitters on a RS485 communication bus.

Functions that can be set include relay assignment, time delays on make or break, complex zoning, sensor types and ranges, alarm set points and much more. The controller has a two line backlit LCD display that actively scrolls through all programmed channels and displays the gas name, concentration and alarm status. The PDC features LED alarm indicators, audible alarm with silence button, and RoHS compliant circuit boards.

Use with any CETCI analog transmitters, AST or ATW series, or digital transmitters, DST series. Each PDC is pre-programmed at the factory, and is completely field adjustable using a boardmounted push button keypad.

KEY FEATURES

- » Up to 8 analog transmitters or up to 128 digital transmitters
- » RS485 communication with digital transmitters
- » RoHS compliant circuit boards
- » Relay output modules
- » Scrolling, two line LCD display
- » LED alarm indicators
- » Completely field programmable
- » Low, mid and high alarm setpoints
- » Audible alarm with silence button
- » Four wire daisychain wiring
- » Eight onboard SPDT relays
- » Optional BACnet® output module
- » CSA & UL certified

APPLICATIONS

- » Parking Garages
- » Repair Shops
- » Arenas
- » Pools
- » Food Processing Plants
- » ... and many more

SAMPLE ENGINEERING SPECIFICATIONS

Digital Multichannel Gas Detection System for Freight Handling Areas Provide a wall mount, self-contained, field programmable control panel with digital display. LED alarm indication, and door mounted 90 dB audible alarm with silence / acknowledge witch. There shall be a scrolling LCD display of gas, concentration, and alarm status. System controller shall be capable of supporting up to 128 digital transmitters on a RS485 communication bus. System shall support analog output modules (eight 4 - 20 mA outputs per module) and relay output modules (eight 5 A SPDT relays per module). The controller shall have 8 on board relays. System wiring shall be 4 wire digital network (2 low voltage power wires and a twisted pair for the communication bus). System power requirement is 0 - 240 VGA, 47 to 63 Hz. The system shall be CAA / Ut tested for lectrical safety.

Provide remote mount sensor / transmitters for CO, with an HVAC electrochemical sensor for CO with a detection range of 0 - 200 ppm. The sensor / transmitter for CO shall be housed in a wall mount, rugged, break resistant, PVC junction box with a secured, hinged door. An optional watertight Polycarbonate enclosure shall be available. The remote mount CO sensor / transmitter shall operate on power supplied by the control panel, and shall provide a digital output signal to the control panel. Install the CO sensor at approximately 4 - 6 ft from the floor. Model DST-ECO. Supply one sensor / transmitter for every 5,000 - 7,000 ft of exposure area. The electrochemical CO sensor shall be capable of meeting government Occupational Health and Safety measurement standards for workplace exposure to toxic qases & vapours.

Provide remote mount sensor / transmitters for NO, with an electrochemical sensor with a range of 0 - 10 ppm. The sensor / transmitter for NO, shall be housed in a wall mount, rugged, break resistant, PVC junction box with a secured, hinged door. An optional watertight Polycarbonate enclosure shall be available. The remote mount NO, sensor / transmitter shall operate on power supplied by the control panel, and shall provide a digital output signal to the control panel. Install the NO, sensor at approximately 4 - 64 from the flow. Model DST-END. Supply one sensor / transmitter for every 5,000 - 7,000 ft² of exposure area. The NO, gas sensor shall be capable of meeting government Occupational Health and Safety measurement standards for workplace ensource to toxic oases and yaourous.

System operation shall be as follows: Upon detection of 25 ppm C0 in air or 0.7 ppm N0, the system shall illuminate the Low alarm LED, the Low alarm relays (exhaust fans) will be activated immediately. The system shall keep the fans running for a minimum of 10 minutes to avoid cycling. Upon detection of 50 ppm C0 in air or 1.0 ppm N0, the system shall illuminate the Mid alarm LED and the Mid alarm relays will be activated, (Mid alarm only available with LCD display). The system shall keep the Mid relays active for a minimum of 10 minutes. Upon detection of 100 ppm C0 in air or 1.5 ppm N0, the system shall illuminate the High alarm LED, the High alarm relays and audible alarm will be activated. The system shall keep the High relays active for a minimum of 10 minutes. Audible alarm can be silenced from the forth panel publ button.

The contractor shall provide all wiring, conduit and interconnection required for a successful installation.

More specification samples are available at www.critical-environment.com.

Controllers - GAS DETECTION DATASHEET PDC Multi-Channel Controller

TECHNICAL SPECIFICATIONS

CONTROLLER PACKAGES

Up to 2 analog inputs	A02
Up to 8 analog inputs	A08
Up to 8 digital inputs	D08
Up to 16 digital inputs	D16
Up to 24 digital inputs	D24
Up to 32 digital inputs	D32
Up to 64 digital inputs	D64
Up to 96 digital inputs	D96
Up to 128 digital inputs	D128

MECHANICAL

Enclosure	Lockable, powder painted 18 gauge steel
Weight	4.3 kg (9.4 lbs)
Size	12.3" x 12.3" x 4.2"
	(311 mm x 311 mm x 106 mm)

ELECTRICAL

Power Requirement	90 - 240 VAC, 47 - 63 Hz
Current Draw	500 mA (controller only)
Outputs	4 - 20 mA signals
Relay	8 dry SPDT contact, 5 amps @ 240 V each
Wiring	Analog 3 wire shielded Digital daisychain only, shielded 2 wire 14 gauge stranded power 2 wire 18 gauge twisted pair network
Fuse	Automatic resetting thermal

ENVIRONMENTAL (sensor dependant)

Operating Temperature	0°C to 40°C (32°F to 100°F)
Humidity	10 - 95% RH non-condensing

CERTIFICATION

CSA	Certified
UL	Certified

WIRING

PRODUCT CODES

ANALOG INPUT MODEL

Up to 2 inputs	PDC-A02
Up to 8 inputs	PDC-A08

DIGITAL INPUT MODEL

Digitite init of MODEL	
Up to 8 inputs	PDC-D08
Up to 16 inputs, 1 only CNB-2	PDC-D16
Up to 24 inputs, 1 only CNB-2 & 1 only RPS-24 V	PDC-D24
Up to 32 inputs, 2 only CNB-2 & 1 only RPS-24 V	PDC-D32
Up to 64 inputs, 4 only CNB-2 & 2 only RPS-24 V	PDC-D64
Up to 96 inputs, 5 only CNB-2 & 3 only RPS-24 V	PDC-D96
Up to 128 inputs, 6 only CNB-2 & 4 only RPS-24 V	PDC-D128

OPTIONS (to be added to the end of the product code)

Industrial horn, 103 dB, remote	H
BACnet [®] output module	BAC
Strobe light, 4" diameter, remote	L

ACCESSORIES

Relay module, 8 relays each, remote	RRM-8
Analog output module, 8 4 - 20 mA outputs each	RAO-8
Power supply, 24 V, remote	RPS-24V
CAN network bridge	CNB-2
Strobe & horn combo, remote	RSH-24
Annunciator, remote	RAP-128
Metal protective guard, large, 16 gauge, galvanized metal guards for controllers	SCS-8000-SPG

Controllers - GAS DETECTION DATASHEET PDC-W Multi-Channel Controller

PDC multi-channel controllers are programmable analog or digital controllers designed to handle a large number of remote transmitters and perform a wide range of control functions. The micro-controller based circuit provides the user with an almost unlimited range of configuration possibilities including simple or complex zoning, changing alarm set points, time delays and relay addressing. The PDC controller can accept inputs from up to 8 analog transmitters or can handle up to 128 digital transmitters on a RS485 communication bus.

Functions that can be set include relay assignment, time delays on make or break, complex zoning, sensor types and ranges, alarm set points and much more. The controller has a two line backlit LCD display that actively scrolls through all programmed channels and displays the gas name, concentration and alarm status. The PDC features LED alarm indicators, audible alarm with silence button, and ROHS compliant circuit boards.

Use with any CETCI analog transmitters, AST or ATW series, or digital transmitters, DST series. Each PDC is pre-programmed at the factory, and is completely field adjustable using a boardmounted push button keypad.

KEY FEATURES

- » Up to 8 analog transmitters or up to 128 digital transmitters
- » RS485 communication with digital transmitters
- » RoHS compliant circuit boards
- » Relay output modules
- » Scrolling, two line LCD display
- » LED alarm indicators
- » Completely field programmable
- » Low, mid and high alarm setpoints
- » Audible alarm with silence button
- » Four wire daisychain wiring
- » Eight onboard SPDT relays
- » CSA & UL certified

APPLICATIONS

- » Parking Garages
- » Repair Shops
- » Arenas
- » Pools
- » Food Processing Plants
- » ... and many more

TECHNICAL DRAWING

Coming soon...

SAMPLE ENGINEERING SPECIFICATIONS

Carbon Monoxide & Combustible Gas Transmitters for Parking Garages Provide digital transmitters with continuous, linear, signal capable of being connected to model PDC series controller on a RS-485 communication bus. The transmitter shall be a CETCI model DST-ECO for Carbon Monoxide and a model DST-SCB for combustible gases. The transmitters shall provide a digital signal representing a Carbon Monoxide measurement range of 0 - 200 ppm CO or 0 - 50% LEL Propane (or other Combustibles gases / vapours). The circuit shall incorporate a long-life HVAC electrochemical sensor for CO or a long life solid-state sensor for combustibles with temperature compensation and an automatic resetting thermal fuse for fault protection.

The transmitter circuit shall be housed in a wall mount, rugged, break resistant, corrosion resistant, PVC junction box with a secured, hinged door. The PVC junction box shall have conduit entry ports on the top, bottom, right side and rear. The circuit shall operate from 24 VDC input voltage supplied from the controller. Wiring shall be 2 conductors for low voltage power, and a two wire shielded twisted pair for the communication bus. Wiring shall be shielded to in conduit. An optional watertight Polycarbonate enclosure shall be available.

Provide digital signal readings to the controller to allow accurate settings for fan control at 25 ppm CO or 10% LEL Propane and a secondary alarm condition at 100 ppm CO or 20% LEL Propane.

The contractor shall provide all wiring, conduit and interconnection required for a successful installation. System should be tested and commissioned after installation, with a report provided after the site visit.

More specification samples are available at www.criticalenvironment.com.

Controllers - GAS DETECTION DATASHEET PDC-W Multi-Channel Controller

TECHNICAL SPECIFICATIONS

CONTROLLER PACKAGES

Up to 2 analog inputs	A02
Up to 8 analog inputs	A08
Up to 8 digital inputs	D08
Up to 16 digital inputs	D16
Up to 24 digital inputs	D24
Up to 32 digital inputs	D32
Up to 64 digital inputs	D64
Up to 96 digital inputs	D96
Up to 128 digital inputs	D128

MECHANICAL

Enclosure	Watertight fiberglass reinforced polyester
Weight	4.5 kg (9.8 lbs)
Size	14" x 12" x 8" (356 mm x 305 mm x 203 mm)

ELECTRICAL

Power Requirement	90 - 240 VAC, 47 - 63 Hz
Current Draw	500 mA (controller only)
Outputs	4 - 20 mA signals
Relay	8 dry SPDT contact, 5 amps @ 240 V each
Wiring	Analog 3 wire shielded
	Digital daisychain only, shielded
	2 wire 14 gauge stranded power
	2 wire 18 gauge twisted pair network
Fuse	Automatic resetting thermal

ENVIRONMENTAL (sensor dependant)

Operating Temperature	0°C to 40°C (32°F to 100°F)
Humidity	10 - 95% RH non-condensing

CERTIFICATION

CSA	Certified	
UL	Certified	

WIRING

PRODUCT CODES

ANALOG INPUT MODEL

Up to 2 inputs	PDC-A02-W
Up to 8 inputs	PDC-A08-W

DIGITAL INPUT MODEL

Up to 8 inputs	PDC-D08-W
Up to 16 inputs, 1 only CNB-2	PDC-D16-W
Up to 24 inputs, 1 only CNB-2 & 1 only RPS-24 V	PDC-D24-W
Up to 32 inputs, 2 only CNB-2 & 1 only RPS-24 V	PDC-D32-W
Up to 64 inputs, 4 only CNB-2 & 2 only RPS-24 V	PDC-D64-W
Up to 96 inputs, 5 only CNB-2 & 3 only RPS-24 V	PDC-D96-W
Up to 128 inputs, 6 only CNB-2 & 4 only RPS-24 V	PDC-D128-W

OPTIONS (to be added to the end of the product code)

Industrial horn, 103 dB, remote	Н
BACnet® output module	BAC
Strobe light, 4" diameter, remote	L

ACCESSORIES

Relay module, 8 relays each, remote	RRM-8
Analog output module, 8 4 - 20 mA outputs each	RAO-8
Power supply, 24 V, remote	RPS-24V
CAN network bridge	CNB-2
Strobe & horn combo, remote	RSH-24
Annunciator, remote	RAP-128
Metal protective guard, large, 16 gauge, galvanized metal guards for controllers	SCS-8000-SPG

Self Contained - GAS DETECTION DATASHEET GEM-II Multi-Purpose Gas Detector

GEM-II multi-purpose gas detector represents excellent value for the end user. They are available in one or two channel configurations accommodating accurate "smart" sensors and providing a wide range of features. These features include CSA, UL and C-Tick certifications, RoHS compliant circuit boards, two 5-amp dry contact relays, electronic adjustable set points, audible alarm, time delays, analog output, pluggable wiring terminal, rugged polycarbonate enclosure with hinged door, Lexan label, and optional 4-digit display.

KEY FEATURES

- » Single or dual channel operation
- » Network multiple units
- » Integral or remote sensors
- » Integral plug and play "smart" sensors
- » 4 20 mA linear output signal
- » Three conduit entry ports
- » Thermal resetting fuse
- » LED light indicators
- » Two 5-amp SPDT relays
- » RoHS compliant circuit boards
- » Economical
- » CSA, UL & C-Tick certified

APPLICATIONS

- » Parking Garages
- » Repair Shops
- » Ice Cleaning Machine Rooms
- » Manufacturing Plants
- » ... and many more

TECHNICAL DRAWING

SAMPLE ENGINEERING SPECIFICATIONS

Vehicle Exhaust Detection System for Carbon Monoxide & Nitrogen Dioxide Supply a dual channel, self-contained gas detection system, model GEM-EECO-END, for the monitoring of carbon monoxide (gas engine exhaust) and nitrogen dioxide (diesel engine exhaust), housed in a rugged, wall mount, dripproof PVC enclosure with hinged, secured door. System power shall be 24 VAC nominal. The system shall have two integral electrochemical sensors, one C0 with measurement range of 0 - 200 ppm C0 in air and one N0, with measurement range of 0 - 10 ppm N0, in air. Area of monitoring coverage is up to 5,000 -7,000 ft² per sensor.

The monitor shall provide an LED indicating light for power, low alarm, high alarm, and fault condition plus channel indication LEDs, one audible alarm with silence push-button and two SPDT dry contact alarm relays, each rated 5 A at 240 VAC. The system must be accurate enough to measure to government workplace hazardous gas exposure standards. The system shall also provide field adjustable time delays for "delays on make" and "delays on break" for each sensor to allow custom configuration of fan control by the system relays, if desired.

The controller shall provide a circuit test button to allow the user to confirm system operation and exhaust fan control from the panel. The controller shall also provide a push-button to allow the user to override the system control and operate exhaust fans continuously for 15-minute segments to evacuate air from specific parts of the parking gazee. Installation height for the gas detection controller with integral C0 & NO, sensors is 4 – 6 ft from the floor.

System operation shall be as follows: System relays are normally energized in non-gas-alarm state so they act in failsafe operation. Upon detection of 25 ppm NO₂ in air, the system shall illuminate the Low alarm LED (amber) and the low gas alarm relay shall de-energize activating single-speed exhaust fans or low speed of twospeed exhaust fans plus make up air fans. Upon detection of 100 ppm CO in air or 2 ppm NO₂, the system shall illuminate the High alarm LED (red), the system audible alarm will be activated and the high gas alarm relay shall deenergize activating high speed of two-speed exhaust fans plus make up air fans. Upon detection of 100 ppm CO in air or 2 ppm NO₂, the system shall illuminate the High gas alarm relay shall deenergize activating high speed of two-speed exhaust fans or remote alarm devices. Audible alarm can be silenced from the front panel push button. In the event of a fail condition, the system adible alarm shall be activated and the fail LED on the front panel shall illuminate red.

The contractor shall provide all wiring, conduit and interconnection required for a successful installation. System should be tested and commissioned after installation, with a report provided after the site visit.

More specification samples are available at www.critical-environment.com.

Self Contained - GAS DETECTION DATASHEET GEM-II Multi-Purpose Gas Detector

TECHNICAL SPECIFICATIONS

GAS TYPE

Carbon Monoxide (CO)	EC0
Combustibles (solid state)	SCB
Methane (CH ₄)	SCB
Nitrogen Dioxide (NO ₂)	END
Nitric Oxide (NO)	ENO
Oxygen (0 ₂)	E02
Propane (C ₃ H ₈)	SCB
Refrigerants (R12, R22, R134A, R401A, R402A, R404A, R407C, R410A, R422A, R422D, R438A, R507)	SR2
Sulphur Dioxide (SO ₂)	ES0
TVOCs (solid state)	SOS

MECHANICAL

Enclosure	General purpose PVC
Weight	600 g (1.2 lb)
Size	5.3" x 6.8" x 2.6" (135 mm x 173 mm x 66 mm)

ELECTRICAL

Power Requirement	15 - 30 VDC or 12 - 28 VAC
Current Draw	Approximately 125 mA
Outputs	Linear 4 - 20 mA (single)
Wiring	VDC three-conductor shielded
wining	VAC four-conductor shielded
Fuse	Automatic resetting thermal

ENVIRONMENTAL (sensor dependant)

Operating Temperature	-20°C to 50°C (-5°F to 120°F)
Humidity	15 - 90% RH non-condensing

CERTIFICATION

CSA	Certified
UL	Certified

PRODUCT CODES

SINGLE CHANNEL MODEL

Integral sensor, carbon monoxide (CO)	GEM-AECO
Integral sensor, nitrogen dioxide (NO ₂)	GEM-AEND
Integral sensor, nitric oxide (NO)	GEM-AENO
Integral sensor, sulphur dioxide (SO ₂)	GEM-AESO
Integral sensor, oxygen (0,)	GEM-AE02
Remote sensor	GEM-B
Remote sensor, combustible gases (solid state)	GEM-BSCB
Remote sensor, methane (CH ₄)	GEM-BSCB
Remote sensor, propane (C ₃ H ₈)	GEM-BSCB
Remote sensor, refrigerants (solid state)	GEM-BSR2
Remote sensor, TVOCs (solid state)	GEM-BSOS

DUAL CHANNEL MODEL

Integral carbon monoxide (CO), remote combustible	GEM-DECO-SCB
Integral carbon monoxide (CO), remote methane (CH₄)	GEM-DECO-SCB
Integral carbon monoxide (C0), remote propane (C ₁ H ₈)	GEM-DECO-SCB
Integral & remote sensors, carbon monoxide (CO)	GEM-DECO-ECO
Integral carbon monoxide (CO), remote nitrogen dioxide (NO ₂)	GEM-DECO-END
Integral carbon monoxide (CO), remote nitric oxide (NO)	GEM-DECO-ENO
Integral & remote sensors, oxygen (0 ₂)	GEM-DE02-E02
Integral & remote sensors, nitrogen dioxide (NO ₂)	GEM-DEND-END
Integral & remote sensors, nitric oxide (NO)	GEM-DENO-ENO
Integral, carbon monoxide (CO) & nitrogen dioxide (NO ₂)	GEM-EECO-END
Integral, carbon monoxide (CO) & nitric oxide (NO)	GEM-EECO-ENO
Integral, carbon monoxide (CO) & oxygen (O ₂)	GEM-EECO-EO2
Integral, carbon monoxide (CO) & sulphur dioxide (SO ₂)	GEM-EECO-ESO
Integral, nitrogen dioxide (NO ₂) & sulphur dioxide (SO ₂)	GEM-EEND-ESO

OPTIONS (to be added to the end of the product code)

LLD ulgital ulsplay	IN
120 VAC powered version	J
Enclosed external transformer, 120 - 22 VAC	TIB-2250

М

ACCESSORIES

Calibration kit, 15 L or 17 L cylinder, 0.5 LPM flow regulator	CET-8000-CK1
Calibration kit, 34 L, 58 L, 75 L, or 103 L cylinder, D.5 LPM flow regulator	CET-7150-CK1

Self Contained - GAS DETECTION DATASHEET GEM-W Multi-Purpose Gas Detector

GEM-II multi-purpose gas detector represents excellent value for the end user. They are available in one or two channel configurations accommodating accurate "smart" sensors and providing a wide range of features. These features include CSA, UL and C-Tick certifications, RoHS compliant circuit boards, two S-amp dry contact relays, electronic adjustable set points, audible alarm, time delays, analog output, pluggable wiring terminal, rugged polycarbonate enclosure with hinged door, Lexan label, and optional 4-digit display.

KEY FEATURES

- » Single or dual channel operation
- » Network multiple units
- » Integral or remote sensors
- » Integral plug and play "smart" sensors
- » 4 20 mA linear output signal
- » Three conduit entry ports
- » Thermal resetting fuse
- » LED light indicators
- » Two 5-amp SPDT relays
- » RoHS compliant circuit boards
- » Economical
- » CSA, UL & C-Tick certified

APPLICATIONS

- » Parking Garages
- » Repair Shops
- » Ice Cleaning Machine Rooms
- » Manufacturing Plants
- » ... and many more

TECHNICAL DRAWING

SAMPLE ENGINEERING SPECIFICATIONS

Vehicle Gas Detection System for Combustible Fuel Vapors Supply a single channel, self-contained gas detection system, model GEM-B-SCB, for the monitoring of Propane fuel, gasoline vapours and other "heavier-than-air" fuel vapours, housed in a rugged, wall mount, drip-proof PVC enclosure with hinged, secured door. System power shall be 24 VAC nominal. The system shall have one remote solid-state sensor with measurement range of 0 - 50% LEL Combustibles in air. Area of monitoring coverage is 3,000 - 5,000 ft² / sensor.

The monitor shall provide an LED indicating light for power, low alarm, high alarm, and fault condition plus channel indication LED, one audible alarm with silence push-button and two SPDT dry contact alarm relays, each rated 5A at 240 VAC. The system must be accurate enough to measure to government workplace hazardous gas exposure standards. The system shall also provide field adjustable time delays for "delays on make" and "delays on break" for each sensor to allow custom configuration of fan control by the system relays, if desired.

The controller shall provide a circuit test button to allow the user to confirm system operation and exhaust fan control from the panel. The controller shall also provide a push-button to allow the user to override the system control and operate exhaust fans continuously for 15-minute segments to evacuate air from specific parts of the parking garage. Installation height for the gas detection controller is 4 - 6 ft from the floor. Installation height for the remote solid-state Combustibles sensors is 6" from the floor.

System operation shall be as follows: System relays are normally energized in non-gas-alarm state so they act in failsafe operation. Upon detection of 10% LEL fuel vapours in air, the system shall illuminate the Low alarm LED (amber) and the low gas alarm relay shall de-energize activating single-speed exhaust fans or low speed of two-speed exhaust fans plus make up air fans. Upon detection of 20% LEL fuel vapours in air, the system shall illuminate the High alarm LED (red), the system audible alarm will be activated and the high gas alarm relay shall de-energize activating high speed of two-speed exhaust fans or remote alarm devices. Audible alarm can be silenced from the front panel push button. In the event of a fail condition, the system audible alarm shall be activated and the fail LED on the front panel shall illuminate red.

The contractor shall provide all wiring, conduit and interconnection required for a successful installation. System should be tested and commissioned after installation, with a report provided after the site visit.

More specification samples are available at www.critical-environment.com.

Self Contained - GAS DETECTION DATASHEET GEM-W Multi-Purpose Gas Detector

TECHNICAL SPECIFICATIONS

GAS TYPE

Carbon Monoxide (CO)	EC0
Combustibles (solid state)	SCB
Methane (CH ₄)	SCB
Nitrogen Dioxide (NO ₂)	END
Nitric Oxide (NO)	ENO
Oxygen (0 ₂)	E02
Propane (C ₃ H ₈)	SCB
Refrigerants (R12, R22, R134A, R401A, R402A, R404A, R407C, R410A, R422A, R422D, R438A, R507)	SR2
Sulphur Dioxide (SO ₂)	ESO
TVOCs (solid state)	SOS

MECHANICAL

Enclosure	Water / dust tight polycarbonate
Weight	700 g (1.4 lb)
Size	5.1" x 7.1" x 4.0" (130 mm x 181 mm x 102 mm)

ELECTRICAL

Power Requirement	15 - 30 VDC or 12 - 28 VAC
Current Draw	Approximately 125 mA
Outputs	Linear 4 - 20 mA (single)
Wiring	VDC three-conductor shielded
	VAC four-conductor shielded
Fuse	Automatic resetting thermal

ENVIRONMENTAL (sensor dependant)

Operating Temperature	-20°C to 50°C (-5°F to 120°F)
Humidity	15 - 90% RH non-condensing

CERTIFICATION

CSA	Certified	
UL	Certified	

PRODUCT CODES

SINGLE CHANNEL MODEL

Integral sensor, carbon monoxide (CO)	GEM-AECO-W
Integral sensor, nitrogen dioxide (NO ₂)	GEM-AEND-W
Integral sensor, nitric oxide (NO)	GEM-AENO-W
Integral sensor, sulphur dioxide (SO ₂)	GEM-AESO-W
Integral sensor, oxygen (0,)	GEM-AE02-W
Remote sensor	GEM-B-W
Remote sensor, combustible gases (solid state)	GEM-BSCB-W
Remote sensor, methane (CH ₄)	GEM-BSCB-W
Remote sensor, propane (C ₃ H ₈)	GEM-BSCB-W
Remote sensor, refrigerants (solid state)	GEM-BSR2-W
Remote sensor, TVOCs (solid state)	GEM-BSOS-W

DUAL CHANNEL MODEL

Integral carbon monoxide (CO), remote combustible (solid state)	GEM-DECO-SCB-W
Integral carbon monoxide (CO), remote methane (CH_4)	GEM-DECO-SCB-W
Integral carbon monoxide (CO), remote propane (C,H _s)	GEM-DECO-SCB-W
Integral & remote sensors, carbon monoxide (CO)	GEM-DECO-ECO-W
Integral carbon monoxide (CO), remote nitrogen dioxide (NO ₂)	GEM-DECO-END-W
Integral carbon monoxide (CO), remote nitric oxide (NO)	GEM-DECO-ENO-W
Integral & remote sensors, oxygen (0 ₂)	GEM-DE02-E02-W
Integral & remote sensors, nitrogen dioxide (NO ₂)	GEM-DEND-END-W
Integral & remote sensors, nitric oxide (NO)	GEM-DENO-ENO-W
Integral, carbon monoxide (CO) & nitrogen dioxide (NO ₂)	GEM-EECO-END-W
Integral, carbon monoxide (CO) & nitric oxide (NO)	GEM-EECO-ENO-W
Integral, carbon monoxide (CO) & oxygen (0 ₂)	GEM-EECO-EO2-W
Integral, carbon monoxide (CO) & sulphur dioxide (SO ₂)	GEM-EECO-ESO-W
Integral, nitrogen dioxide (NO ₂) & sulphur dioxide (SO ₂)	GEM-EEND-ESO-W

OPTIONS (to be added to the end of the product code)

LED digital display	Ν
Splash guard	S
120 VAC powered version	J
Enclosed external transformer, 120 - 22 VAC	TIB-2250

ACCESSORIES

Calibration kit, 15 L or 17 L cylinders, 0.5 LPM flow regulator	CET-8000-CK1
Calibration kit, 34 L, 58 L, 75 L, or 103 L cylinders, 0.5 LPM flow regulator	CET-7150-CK1

Transmitters - GAS DETECTION DATASHEET AST-I Industrial Infrared Transmitter

AST-ICD, AST-IHC & AST-INI are analog transmitters with high quality, industrial grade, miniature infrared sensors. They are supplied, as a standard in a water / dust tight, corrosion resistant polycarbonate enclosure.

These instruments use high quality, long life, dual beam sensors. The infrared sensor is supplied with a microporous PTFE filter attached to provide splash protection only. This filter is not designed to provide protection to the sensor from application of pressurized water.

KEY FEATURES

- » Dual temperature compensated pyroelectric infrared detectors
- » Low power consumption
- » RoHS compliant circuit boards
- » Fast response
- » Water / dust tight / corrosion resistant polycarbonate enclosure
- » Linear analog (4 20 mA) output
- » Target gases include CO₂, Hydrocarbons (including Methane), Nitrous Oxide
- » Measurement ranges from 0 1,000 ppm up to 0 100% volume (sensor & gas dependent)

APPLICATIONS

- » Commercial Buildings
- » Institutional Buildings
- » Waste Water Treatment Plants
- » Oil & Gas Plants
- » Manufacturing Plants
- » ... and many more

TECHNICAL DRAWING

SAMPLE ENGINEERING SPECIFICATIONS

Coming soon...

Transmitters - GAS DETECTION DATASHEET AST-I Industrial Infrared Transmitter

WIRING

TECHNICAL SPECIFICATIONS

GAS TYPE	
Carbon Dioxide (CO ₂)	ICD
Hydrocarbon Gases	IHC
Nitrous Oxide (N ₂ 0)	INI

MECHANICAL

Enclosure	Water / dust tight polycarbonate
Weight	255 g (9 oz)
Size	4.9" x 4.9" x 2.9" (125 mm x 125 mm x 74 mm)

ELECTRICAL

Power Requirement	24 VDC nominal (12 - 30 VDC) (polarity protected) 5 W maximum
Current Draw	70 - 100 mA
Outputs	Linear 4 - 20 mA analog (10 bit resolution with current limit)
Fuse	500 mA anti-surge in-line fuse for supplied power

ENVIRONMENTAL (sensor dependant)

Operating Temperature	-20°C to 50°C (-4°F to 122°F)
Humidity	0 - 95% RH non-condensing

PRODUCT CODES

AST-ICD INDUSTRIAL CARBON DIOXIDE (CO ₂)	
Industrial carbon dioxide (CO ₂), watertight housing, 0 - 5% volume CO ₂	AST-ICD-BW
Industrial carbon dioxide (CO ₂), watertight housing, 0 - 100% volume CO ₂	AST-ICD-CW
Industrial carbon dioxide (CO ₂), watertight housing, 0 - 100% volume CO ₂	AST-ICD-DW

AST-IHC INDUSTRIAL HYDROCARBON GASES (CH4)

Industrial hydrocarbon gases, watertight housing, 0 - 100% LEL CH_4	AST-IHC-BW
Industrial hydrocarbon gases, watertight housing, 0 - 100% volume CH ₄	AST-IHC-CW

AST-INI INDUSTRIAL NITRIOUS OXIDE (N,0)

Industrial nitrious oxide (N,0), watertight housing,	ACT INIL EVAL
0 - 1,000 ppm N ₂ 0	ASI-INI-EW

ACCESSORIES	
Calibration kit, 15 L or 17 L cylinders, 0.5 LPM flow regulator	CET-8000-CK1
Calibration kit, 34 L, 58 L, 75 L, or 103 L cylinders, 0.5 LPM flow regulator	CET-7150-CK1
Metal protective guard, small, 16 gauge, galvanized metal guards for transmitters	SCS-8000-RSG

Transmitters - GAS DETECTION DATASHEET AST-IS Standard CO₂ Transmitter

Office wall mount with optional LED display

AST-IS transmitter contains an infrared sensor for accurate, reliable carbon dioxide (CO.) detection.

AST-IS transmitters convert the raw signal from a sensor into a useful output that can be sent to a controller or building automation system.

Standard enclosure is an attractive PVC office mount for indoor use. Optional duct mount, LCD digital display, relay, IP54 enclosure, and temperature sensor are available.

AST-IS transmitters feature 4 - 20 mA or 0 - 10 VDC linear output signals, low 24 VDC / VAC nominal voltage, standard 0 - 2,000 ppm range and 0 -4% volume available for winery applications, and CE certification.

Lifetime calibration. Field calibration not required.

KEY FEATURES

- » 4 20 mA or 0 10 VDC linear output signal
- » Operating power 24 VDC or 24 VAC nominal
- » Lifetime calibration
- » 0 2,000 ppm standard range
- » Optional relay, LCD digital display & duct mount kit
- » RoHS compliant circuit boards
- » CE certified

APPLICATIONS

- » Residential Buildings
- » Commercial Buildings
- » Greenhouses
- » Schools / Educational Institutions
- » Offices
- » ... and many more

SAMPLE ENGINEERING SPECIFICATIONS

Coming soon...

Transmitters - GAS DETECTION DATASHEET AST-IS Standard CO₂ Transmitter

WIRING

TECHNICAL SPECIFICATIONS

GAS TYPE

Carbon Dioxide (CO₂)

MECHANICAL

Enclosure	General purpose PVC (IP30 rated)
Weight	tbd
Size	3.9" x 3.1" x 1.1" (100 mm x 80 mm x 28 mm)

ELECTRICAL

Power Requirement	24 VDC or VAC
Outputs	Linear 4 - 20 mA or 0 - 10 VDC signal

SENSOR

Sampling Method	Non-dispersive infrared
Monitoring Method	Diffusion
Range	0 - 2,000 ppm
Accuracy	\pm 30 ppm, \pm 3% of reading

ENVIRONMENTAL (sensor dependant)

Operating Temperature	0°C to 50°C (32°F to 122°F)
Humidity	0 - 95% RH non-condensing

CERTIFICATION

PRODUCT CODES

AST-IS1
AST-IS2
AST-IS5
AST-IS9
AST-IS10
AST-IS11
AST-IS12
AST-IS14
AST-IS15
AST-IS16

Transmitters - GAS DETECTION DATASHEET AST-IS Industrial CO₂ Transmitter

AST-IS transmitter contains an infrared sensor for accurate, reliable carbon dioxide (CO.) detection.

AST-IS transmitters convert the raw signal from a sensor into a useful output that can be sent to a controller or building automation system.

Standard enclosure is an attractive PVC office mount for indoor use. Optional duct mount, LCD digital display, relay, IP54 enclosure, and temperature sensor are available.

AST-IS transmitters feature 4 - 20 mA or 0 - 10 VDC linear output signals, low 24 VDC / VAC nominal voltage, standard 0 - 2,000 ppm range and 0 -4% volume available for winery applications, and CE certification.

Lifetime calibration. Field calibration not required.

KEY FEATURES

- » 4 20 mA or 0 10 VDC linear output signal
- » Operating power 24 VDC or 24 VAC nominal
- » Lifetime calibration
- » 0 2,000 ppm standard range
- » Optional relay, LCD digital display & duct mount kit
- » RoHS compliant circuit boards
- » CE certified

APPLICATIONS

- » Residential Buildings
- » Commercial Buildings
- » Greenhouses
- » Schools / Educational Institutions
- » Offices
- » ... and many more

TECHNICAL DRAWING

SAMPLE ENGINEERING SPECIFICATIONS

Coming soon...

Transmitters - GAS DETECTION DATASHEET AST-IS Industrial CO₂ Transmitter

WIRING

TECHNICAL SPECIFICATIONS

GAS TYPE

Carbon Dioxide (CO₂)

MECHANICAL

Enclosure	General purpose PVC (IP54 rated)
Weight	tbd
Cizo	5.6″ x 3.3″ x 1.8″
Size	(142 mm x 84 mm x 46 mm)

ELECTRICAL

Power Requirement	24 VDC or VAC
Outputs	Linear 4 - 20 mA or 0 - 10 VDC signal

SENSOR

Sampling Method	Non-dispersive infrared
Monitoring Method	Diffusion
Range	0 - 2,000 ppm
Accuracy	\pm 30 ppm, \pm 3% of reading

ENVIRONMENTAL (sensor dependant)

Operating lemperature	0°C to 50°C (32°F to 122°F)
Humidity	0 - 95% RH non-condensing

CERTIFICATION

1		
ιr		

Certified

PRODUCT CODES

Carbon dioxide (CO ₂), duct mount	AST-IS3
Carbon dioxide (CO ₂), duct mount with LCD digital display	AST-IS4
Carbon dioxide (CO ₂), wall mount with IP54 industrial enclosure	AST-IS6
Carbon dioxide (CO ₂), wall mount with IP54 industrial enclosure & LCD digital display	AST-IS7
Carbon dioxide (CO ₂) & temperature sensor, duct mount	AST-IS8
Carbon dioxide (CO ₂) & temperature sensor, wall mount with IP54 industrial enclosure & relay	AST-IS13
Carbon dioxide (CO ₂), duct mount with LCD digital display	AST-IS17
Carbon dioxide (CO ₂), wall mount with IP54 industrial enclosure, 0 - 4% volume	AST-IS18

Transmitters - GAS DETECTION DATASHEET DST Digital Transmitter

The rugged, reliable DST digital transmitter offers a variety of sensor types to detect a wide range of gases, including solid state and electrochemical.

The standard enclosure is a rugged polycarbonate and an optional watertight polycarbonate enclosure is available to suit different applications.

DST transmitters output scaled linear signals on an RS485 communication bus, and feature a thermal resetting fuse, an LED indicator for power, alarm and fault, RoHS compliant circuit boards, and an internal "on line" LED.

Automated calibration and other maintenance procedures are simple and are easily performed in the field.

KEY FEATURES

- » RS485 digital output signal
- » Wide variety of sensors for all applications
- » RoHS compliant circuit boards
- » Configured for 4 wire multi-drop wiring
- » Thermal resetting fuse
- » LED indicator for power & alarm status
- » Power requirement 24 VDC nominal
- » Simple calibration procedure

APPLICATIONS

- » Parking Garages
- » Repair Shops
- » Ice Cleaning Machine Rooms
- » Pools
- » Manufacturing plants
- » ... and many more

TECHNICAL DRAWING

SAMPLE ENGINEERING SPECIFICATIONS

Carbon Monoxide & Combustible Gas Transmitters for Parking Garages Provide digital transmitters with continuous, linear, signal capable of being connected to a PDC controller on a RS485 communication bus. The transmitter shall be a CETCI model DST-EC0 for Carbon Monoxide and a model DST-SCB for combustible gases. The transmitters shall provide a digital signal representing a Carbon Monoxide measurement range of 0 - 200 ppm C0 or 0 - 50% LEL Propane (or other Combustibles gases / vapours). The circuit shall incorporate a long-life HVAC electrochemical sensor for CO or a long life solid-state sensor for combustibles with temperature compensation and an automatic resetting thermal fuse for fault protection.

The transmitter circuit shall be housed in a wall mount, rugged, break resistant, corrosion resistant, PVC junction box with a secured, hinged door. The PVC junction box shall have conduit entry ports on the top, bottom, right side and rear. The circuit shall operate from 24 VDC input voltage supplied from the controller. Wiring shall be 2 conductors for low voltage power, and a two wire shielded twisted pair for the communication bus. Wiring shall be shielded or in conduit.

An optional watertight Polycarbonate enclosure shall be available.

Provide digital signal readings to the controller to allow accurate settings for fan control at 25 ppm CO or 10% LEL Propane and a secondary alarm condition at 100 ppm CO or 20% LEL Propane.

The contractor shall provide all required wiring, conduit and interconnection required for a successful installation.

More specification samples are available at www.criticalenvironment.com.

Transmitters - GAS DETECTION DATASHEET **DST Digital Transmitter**

TECHNICAL SPECIFICATIONS

GAS TYPE

Ammonia (NH ₃)	EAM
Carbon Monoxide (CO)	EC0
Combustible Gases (solid state)	SCB
Chlorine (Cl ₂)	ECL
Ethylene Oxide (ETO)	EET
Hydrogen (H ₂)	EH2
Hydrogen Sulphide (H ₂ S)	EHS
Methane (CH ₄)	SCB
Nitrogen Dioxide (NO ₂)	END
Nitric Oxide (NO)	ENO
Oxygen (0 ₂)	002
Ozone (0 ₃)	E03
Propane (C ₃ H ₈)	SCB
Sulphur Dioxide (SO ₂)	ES0

MECHANICAL

Enclosure	Polycarbonate
Weight	255 g (9 oz)
Size	4.4" x 6.5" x 2.5" (113 mm x 165 mm x 65 mm)

ELECTRICAL

Power Requirement	24 VDC supplied by PDC controller
Current Draw	80 - 120 mA
Outputs	Scaled linear digital signal
	KS485 communication bus
	Daisy chain configuration only.
	Power: 14 gauge stranded, 2-conductor
Wiring	Signal: shielded twisted pair, 18 gauge,
	low capacitance. Network bridge every
	1,000 feet or less.
Fuse	Automatic resetting thermal

ENVIRONMENTAL (sensor dependant)

Operating Temperature	-20°C to 40°C (-4°F to 104°F)
Humidity	15 - 95% RH non-condensing

PRODUCT CODES	
Ammonia (NH ₃), 0 - 500 ppm	DST-EAM
Carbon monoxide (CO), 0 - 200 ppm	DST-ECO
Combustible gases (solid state), 0 - 50% LEL	DST-SCB
Chlorine (Cl ₂), 0 - 5 ppm	DST-ECL
Ethylene oxide (ETO), 0 - 20 ppm	DST-EET
Hydrogen (H ₂), 0 - 2,000 ppm	DST-EH2
Hydrogen sulphide (H ₂ S), 0 - 50 ppm	DST-EHS
Methane (CH ₄), 0 - 50% LEL	DST-SCB
Nitrogen dioxide (NO ₂), 0 - 10 ppm	DST-END
Nitric oxide (NO), 0 - 100 ppm	DST-ENO
Oxygen (0 ₂), 0 - 25% volume	DST-002
Ozone (O ₃), 0 - 2 ppm	DST-E03
Propane (C ₃ H ₈), 0 - 50% LEL	DST-SCB
Sulphur dioxide (SO ₂), 0 - 20 ppm	DST-ESO

ACCESSORIES

Calibration kit, 15 L or 17 L cylinders, 0.5 LPM flow regulator	CET-8000-CK1
Calibration kit, 34 L, 58 L, 75 L, or 103 L cylinders, 0.5 LPM flow regulator	CET-7150-CK1
Metal protective guard, small, 16 gauge, galvanized metal guards for transmitters	SCS-8000-RSG

Transmitters - GAS DETECTION DATASHEET DST-W Digital Transmitter

The rugged, reliable DST digital transmitter offers a variety of sensor types to detect a wide range of gases, including solid state and electrochemical.

The standard enclosure is a rugged polycarbonate and an optional watertight polycarbonate enclosure is available to suit different applications.

DST transmitters output scaled linear signals on an RS485 communication bus, and feature a thermal resetting fuse, an LED indicator for power, alarm and fault, RoHS compliant circuit boards, and an internal "on line" LED.

Automated calibration and other maintenance procedures are simple and are easily performed in the field.

KEY FEATURES

- » RS485 digital output signal
- » Wide variety of sensors for all applications
- » RoHS compliant circuit boards
- » Configured for 4 wire multi-drop wiring
- » Thermal resetting fuse
- » LED indicator for power & alarm status
- » Power requirement 24 VDC nominal
- » Simple calibration procedure

APPLICATIONS

- » Parking Garages
- » Repair Shops
- » Ice Cleaning Machine Rooms
- » Pools
- » Manufacturing plants
- » ... and many more

TECHNICAL DRAWING

SAMPLE ENGINEERING SPECIFICATIONS

Carbon Monoxide & Nitrogen Dioxide Transmitters for Parking Garages Provide digital transmitters with continuous, linear, signal capable of being connected to a PDC controller on a RS485 communication bus. The transmitters shall be a CETCI model DST-ECO for Carbon Monoxide and a model DST-END for Nitrogen Dioxide. The transmitters shall provide a digital signal representing the Nitrogen Dioxide detection range of 0 - 10 ppm and the Carbon Monoxide detection range of 0 - 200 ppm. All transmitters shall incorporate accurate electrochemical sensors and automatic resetting thermal fuse for fault protection. The transmitters shall be installed 4 - 6 ft from the floor (breathing zone) and each unit shall be capable of monitoring an area of approximately 5,000 - 7,500 ft².

The transmitter circuit shall be housed in a wall mount, rugged, break resistant, corrosion resistant, PVC junction box with a secured, hinged door. The PVC junction box shall have conduit entry ports on the top, bottom, right side and rear. The circuit shall operate from 24 VDC input voltage supplied from the controller. Wiring shall be 2 conductors for low voltage power, and a two wire shielded twisted pair for the communication bus. Wiring shall be shielded or in conduit.

An optional watertight Polycarbonate enclosure shall be available. System operation shall be as follows: Upon detection of 0.7 ppm N0₂ or 25 ppm C0, the controller shall activate exhaust fans. Upon detection of 1.5 ppm N0₂ or 100 ppm C0, the controller shall activate audible and visual alarms.

The contractor shall provide all required wiring, conduit and interconnection required for a successful installation.

More specification samples are available at **www.critical**environment.com.

Transmitters - GAS DETECTION DATASHEET DST-W Digital Transmitter

TECHNICAL SPECIFICATIONS

GAS TYPE

GADITIE	
Ammonia (NH ₃)	EAM
Carbon Monoxide (CO)	EC0
Combustible Gases (solid state)	SCB
Chlorine (Cl ₂)	ECL
Ethylene Oxide (ETO)	EET
Hydrogen (H ₂)	EH2
Hydrogen Sulphide (H ₂ S)	EHS
Methane (CH ₄)	SCB
Nitrogen Dioxide (NO ₂)	END
Nitric Oxide (NO)	ENO
Oxygen (0,)	002
Ozone (0 ₃)	E03
Propane (C ₃ H ₈)	SCB
Sulphur Dioxide (SO ₂)	ES0
Propane (C ₃ / Sulphur Dioxide (SO ₂)	SCB ESO

MECHANICAL

Enclosure	Water / dust tight polycarbonate
Weight	340 g (12 oz)
Size	5.1" x 5.1" x 3.1" (129 mm x 129 mm x 77 mm)

ELECTRICAL

Power Requirement	24 VDC supplied by PDC controller
Current Draw	80 - 120 mA
Outputs	Scaled linear digital signal
outputs	RS485 communication bus
	Daisy chain configuration only.
	Power: 14 gauge stranded, 2-conductor
Wiring	Signal: shielded twisted pair, 18 gauge,
	low capacitance. Network bridge every
	1,000 feet or less.
Fuse	Automatic resetting thermal

ENVIRONMENTAL (sensor dependant)

Operating Temperature	-20°C to 40°C (-4°F to 104°F)
Humidity	15 - 95% RH non-condensing

PRODUCT CODES

Ammonia (NH ₃), 0 - 500 ppm	DST-EAM-W
Combustible gases (solid state), 0 - 50% LEL	DST-SCB-W
Carbon monoxide (CO), 0 - 200 ppm	DST-ECO-W
Chlorine (Cl ₂), 0 - 5 ppm	DST-ECL-W
Ethylene oxide (ETO), 0 - 20 ppm	DST-EET-W
Hydrogen (H ₂), 0 - 2,000 ppm	DST-EH2-W
Hydrogen sulphide (H ₂ S), 0 - 50 ppm	DST-EHS-W
Methane (CH₄), 0 - 50% LEL	DST-SCB-W
Nitrogen dioxide (NO ₂), 0 - 10 ppm	DST-END-W
Nitric oxide (NO), 0 - 100 ppm	DST-ENO-W
Oxygen (0,), 0 - 25% volume	DST-002-W
Ozone (0 ₃), 0 - 2 ppm	DST-E03-W
Propane (C ₃ H ₈), 0 - 50% LEL	DST-SCB-W
Sulphur dioxide (SO ₂), 0 - 20 ppm	DST-ESO-W

OPTIONS (to be added to the end of the product code)	
Splash guard	

ACCESSORIES Calibration kit, 15 L or 17 L cylinders, 0.5 LPM flow regulator

0.5 LPM flow regulator	
Calibration kit, 34 L, 58 L, 75 L, or 103 L cylinders, 0.5 LPM flow regulator	CET-7150-CK1
Metal protective guard, small, 16 gauge, galvanized metal guards for transmitters	SCS-8000-RSG

CET-8000-CK1

Transmitters - GAS DETECTION DATASHEET LPT Economical Transmitter

LPT is an economical, single sensor, "Low Power Transmitter". Sensors available include carbon monoxide (CO) and nitrogen dioxide (NO₂) which are ideal for vehicle exhaust type applications such as parkades.

LPT transmitter features a two-wire loop, three-wire VDC or four-wire VAC power; making installation a cinch. LPT transmitter also features a 4 - 20 mA linear output signal, automatic thermal resetting fuse, RoHS compliant circuit boards, temperature compensation, and visual LED indication for power and fault conditions and is all enclosed in a standard water / dust tight ABS / polycarbonate enclosure that is equivalent to IP62 (NEMA 12) rating.

Includes new sensor CEF (Calibration Extending Firmware) that takes into account the aging of the sensors so that less frequent calibrations are acceptable in non-critical applications.

Automated calibration and other maintenance procedures are simple and easily performed in the field.

KEY FEATURES

- » Linear 4 20 mA output signal
- » Standard water / dust tight enclosure
- » Single sensor: carbon monoxide (CO) or nitrogen dioxide (NO,)
- » RoHS compliant circuit boards
- » 2-wire loop, 3-wire VDC or 4-wire VAC power
- » Easy maintenance
- » Economical
- » Includes sensor CEF (calibration extending firmware)
- » Auto resetting fuse
- » Automated calibration procedure

APPLICATIONS

- » Parking Garages
- » Repair Shops
- » Ice Cleaning Machine Rooms
- » Manufacturing plants
- » ... and many more

Note: Drawings above are shown with an optional splash guard.

SAMPLE ENGINEERING SPECIFICATIONS

Coming soon...

Transmitters - GAS DETECTION DATASHEET

LPT Economical Transmitter

TECHNICAL SPECIFICATIONS

GAS TYPE

Carbon Monoxide (CO)	ECO
Nitrogen Dioxide (NO ₂)	END

MECHANICAL

Enclosure	ABS / Polycarbonate
Weight	tbd
Size	5.0" x 4.0" x 1.9" (127 mm x 102 mm x 48 mm)

ELECTRICAL

Power Requirement	t	
2-wire n	node 1	6 - 30 VDC
3-wire n	node 1	6 - 30 VDC
4-wire n	node 1	2 - 30 VAC or 16 - 30 VDC
Current Draw	Ν	laximum 25 mA
Outputs	Li N re N	inear 4 - 20 mA laximum 216 Ω load (wiring plus termination esistor) at 16 VDC aximum 316 Ω load (wiring plus termination esistor) at 12 VAC
Wiring	V V	DC two or three-conductor shielded; AC four-conductor shielded
Fuse	A	utomatic resetting thermal

ENVIRONMENTAL (sensor dependant)

Operating Temperature	-20°C to 40°C (-4°F to 104°F)
Humidity	15 - 90% RH non-condensing

SENSORS

Range	CO: 0 - 200 ppm
	NO ₂ :0 - 10 ppm
Repeatability	< 2% of signal
Maximum Zero Shift	CO: NIA
Maximum 2010 Shint	$NO_2: \pm 0.2 \text{ ppm equivalent}$
Cloop Air Output Drift	CO: < 10 ppm equivalent per year
	NO ₂ : < 12% signal loss / month
Posponso Timo (T_)	CO: Within 60 seconds
response nime (1 ₉₀)	NO ₂ : < 25 seconds
Evnocted Life Coop	CO: 6 - 7 years
expected the span	NO ₂ : 2 - 3 years
Operating Temperature	CO: -10°C to 60°C (14°F to 140°F)
operating reliperature	NO ₂ : -20°C to 50°C (-4°F to 122°F)
Operating Humidity	CO: 5 - 95% RH non-condensing
operating numbers	NO ₂ : 15 - 90% RH non-condensing
On and in a December	CO: NIA
operating rfessure	NO_2 : Atmospheric $\pm 10\%$
Calibration	Once a year
CERTIFICATION	
CE	Pending

WIRING

2 Wire Los	•
2016	217
940	34.0
All estimate	50+

34We VDC 3V100 540 43thet say to Control Panel

4-Wire/1842

PRODUCT CODES	
Carbon monoxide (CO), 0 - 200 ppm	LPT-ECO
Nitrogen dioxide (NO ₂), 0 - 10 ppm	LPT-END
OPTIONS (to be added to the end of the product code)	
Splash guard	S
ACCESSORIES	
Calibration kit, 15 L or 17 L cylinders, 0.5 LPM flow regulator	CET-8000-CK1
Calibration kit, 34 L, 58 L, 75 L, or 103 L cylinders, 0.5 LPM flow regulator	CET-7150-CK1
Metal protective guard, small, 16 gauge, galvanized metal guards for transmitters	SCS-8000-RSG

© 2012 Critical Environment Technologies Canada Inc. | Data subject to change without notice. | Toll Free: +1.877.940.8741 | www.critical-environment.com | 61

Dual sensor

with optional LED display

PET BACnet[®] digital transmitter is a "Parkade Emissions Transmitter" that communicates via BACnet[®] protocol MS / TP. It is available with one or two electrochemical sensors or solid-state sensors and temperature sensor, enclosed in a general purpose ABS enclosure.

Featuring thermal resetting fuse, tri-color LED indicator for power and alarm, and an optional 4-digit LED display.

Includes new sensor CEF (Calibration Extending Firmware) that takes into account the aging of the sensors so that less frequent calibrations are acceptable in non-critical applications.

Calibration and maintenance procedures are easily performed in the field without requiring access to the controller.

KEY FEATURES

- » MS / TP BACnet® communication
- » RoHS compliant circuit boards
- » Thermal resetting fuse
- » Tri-color LED light indicator
- » Economical
- » Easy maintenance
- » Single or dual gas sensor
- » Includes temperature sensor
- » BTL certified

APPLICATIONS

- » Parking Garages
- » Repair Shops
- » Commercial HVAC Buildings
- » Light Industrial Plants
- » Laboratories
- » Schools / Educational Institutions
- » ... and many more

TECHNICAL DRAWING

SAMPLE ENGINEERING SPECIFICATIONS

Coming soon...

TECHNICAL SPECIFICATIONS

GAS TYPE

Ammonia (NH ₃)	EAM
Carbon Monoxide (CO)	ECO
Combustible Gases (solid state)	SCB
Ethylene (C ₂ H ₄)	EC4
Formaldehyde (CH ₂ 0)	EFO
Hydrogen (H ₂)	EH2
Methane (CH ₄)	SCB
Nitrogen Dioxide (NO ₂)	END
Nitric Oxide (NO)	ENO
Oxygen (0 ₂)	002
Propane (C ₃ H ₈)	SCB
Refrigerants (R12, R22, R134A, R401A, R402A, R404A, R407C, R410A, R422A, R422D, R438A, R507)	SR2
Sulphur Dioxide (SO ₂)	ESO
TVOCs (solid state)	SOS

MECHANICAL

Enclosure	General Purpose ABS
Weight	284 g (10 oz)
Size	5.0" x 3.5" x 1.5" (127 mm x 89 mm x 38 mm)

ELECTRICAL

Power Requirement	24 VDC
Current Draw	30 mA; 90 mA (with display)
Outputs	BACnet® MS / TP up to 76,800 bps MAC address 0-127 DIP switch settable
Wiring	4-conductor shielded network wiring (daisy-chained)
Fuse	Automatic resetting thermal

ENVIRONMENTAL (sensor dependant)

Operating Temperature	Sensor dependant
Humidity	Sensor dependant

CERTIFICATION

BTL	Certified
CE & C-Tick	Pending

Transmitters - GAS DETECTION DATASHEET PET BACnet[®] Transmitter

PRODUCT CODES

SINGLE CHANNEL MODEL

Ammonia (NH ₃), 0 - 500 ppm	PET-EAM
Carbon monoxide (CO), 0 - 200 ppm	PET-ECO
Combustible gases (solid state), 0 - 50% LEL	PET-SCB
Ethylene (C _z H ₄), 0 - 2,000 ppm	PET-EC4
Formaldehyde (CH ₂ O), 0 - 10 ppm	PET-EFO
Hydrogen (H ₂), 0 - 2,000 ppm	PET-EH2
Methane (CH ₄), 0 - 50% LEL	PET-SCB
Nitrogen dioxide (NO ₂), 0 - 10 ppm	PET-END
Nitric oxide (NO), 0 - 100 ppm	PET-ENO
Oxygen (0 ₂), 0 - 25% volume	PET-002
Propane (C ₃ H ₈), 0 - 50% LEL	PET-SCB
Refrigerants (R12, R22, R134A, R401A, R402A, R404A, R407C, R410A, R422A, R422D, R438A, R507), 0 - 2,000 ppm	PET-SR2
Sulphur Dioxide (SO ₂), 0 - 20 ppm	PET-ESO
TVOCs (solid state), 0 - 500 ppm	PET-SOS

DUAL CHANNEL MODEL

(Choose an electrochemical sensor above & add second electrochemical sensor below)	
Nitrogen dioxide (NO ₂), 0 - 10 ppm	END
Nitric oxide (NO), 0 - 100 ppm	ENO
Oxygen (0 ₂), 0 - 25% volume	002
Sulphur Dioxide (SO ₂), 0 - 20 ppm	ESO

OPTIONS (to be added to the end of the product code)

LED digital display	Ν	
Remote housing (solid state sensor only)	R	
4 - 20 mA analog input (solid state sensor only)	A	
Water / dust tight enclosure	W	
Splash guard (for watertight enclosure only)	S	

ACCESSORIES

Calibration kit, 15 L or 17 L cylinders, 0.5 LPM flow regulator	CET-8000-CK1
Calibration kit, 34 L, 58 L, 75 L, or 103 L cylinders, 0.5 LPM flow regulator	CET-7150-CK1
Metal protective guard, small, 16 gauge, galvanized metal guards for transmitters	SCS-8000-RSG

Accessories - GAS DETECTION DATASHEET Small Metal Protective Guard

The metal protective guard is heavy duty metal protective guard to help protect against abrasive damage, theft and vandalism to the transmitters. This is an added preventative in addition to the product enclosure.

It is made from 16-gauge galvanized steel and has ½" square openings in the front to allow gas and air to flow through to the sensor. With only four slotted mounting holes, installation and removal for gas detector servicing is easy.

KEY FEATURES

- » 16 gauge, clear anodized metal protective guards
- » Large size for self-contained systems and controllers
- » Smaller size for analog & digital transmitters
- » Easy installation

APPLICATIONS

- » Residential Buildings
- » Commercial Buildings
- » Hospitals
- » Laboratories
- » Research Facilities
- » Parking Garages
- » ... and many more

TECHNICAL DRAWING

TECHNICAL SPECIFICATIONS

MECHANICAL

Enclosure	16 gauge galvanized steel
Weight	800 g (28 oz)
Size	7.0" x 6.3" x 3.6" (178 mm x 160 mm x 91 mm)

PRODUCT CODES

Small, 16 gauge galvanized metal guards for transmitters

SCS-8000-RSG

Accessories - GAS DETECTION DATASHEET Large Metal Protective Guard

The metal protective guard is heavy duty metal protective guard to help protect against abrasive damage, theft and vandalism to the transmitters. This is an added preventative in addition to the product enclosure.

It is made from 16-gauge galvanized steel and has ½" square openings in the front to allow gas and air to flow through to the sensor. With only four slotted mounting holes, installation and removal for gas detector servicing is easy.

TECHNICAL DRAWING

TECHNICAL SPECIFICATIONS

MECHANICAL

16 gauge galvanized steel
1.7 kg (3.8 lbs)
10.0″ x 9.5″ x 4.8″ (254 mm x 241 mm x 121 mm)

KEY FEATURES

- » 16 gauge, clear anodized metal protective guards
- » Large size for self-contained systems and controllers
- » Smaller size for analog & digital transmitters
- » Easy installation

APPLICATIONS

- » Residential Buildings
- » Commercial Buildings
- » Hospitals
- » Laboratories
- » Research Facilities
- » Parking Garages
- » ... and many more

PRODUCT CODES

Large, 16 gauge galvanized metal guards	
for controllers	

SCS-8000-RSG

Portable IAQ Instruments - GAS DETECTION DATASHEET YESAIR 8-Channel IAQ Monitor

YESAIR offers more features, flexibility and functionality than any other IAQ instrument on the market today with multi-channel operation, more than 30 different plug and play sensors to select from, including a particulate sensor, huge capacity data logging to SD flash card and much more.

Featuring an eight channel sensor capacity including RH and temperature, YESAIR can handle up to five additional internal plug & play sensors consisting of a maximum of three electrochemical toxic gas or oxygen sensors plus two high current draw sensors such as an infrared PID or catalytic, and a remote particulate sensor such as the YESDUST.

Positive sampling with internal pump ensures good representative samples are taken from all target areas or with diffusion for a quick, direct reading. Eight sensors are viewed live on the multi-line, backlit, LCD display as well as battery and data logging status.

With a few simple mouse clicks, users can analyze and graph data using the optional YES Viewer PC software and an SD card reader. Alternatively, data could be downloaded through the instrument using a standard USB connection.

KEY FEATURES

- » 8 sensor capacity
- » > 30 plug & play sensors available to choose from, including electrochemical, catalytic, infrared & PID
- » Multi-function, easy to use menu
- » Light weight, contoured & comfortable handheld device
- » LCD displays all sensors
- » Sampling with internal sample draw pump or by diffusion
- » High capacity data logging with built-in SD flash card
- » Data logging software available
- » RoHS compliant circuit boards
- » CE certified

APPLICATIONS

- » Residential Buildings
- » Commercial Buildings
- » Hospitals
- » Laboratories
- » Research Facilities
- » Parking Garages
- » ... and many more

TECHNICAL DRAWING

Portable IAQ Instruments - GAS DETECTION DATASHEET YESAIR 8-Channel IAQ Monitor

TECHNICAL SPECIFICATIONS

MECHANICAL

Enclosure	Rugged ABS / Polycarbonate (UL94 rated)
Weight	567 g (20 oz)
Size	7.8" x 3.1" x 3.9" (197 mm x 78 mm x 98 mm)

ELECTRICAL

Power	Standard: Rechargable 3.6 V NiMH battery pack (8 hours continuous operation time c/w plug-in battery charger / wall adapter (100 - 240 V, 50 - 60 Hz) Optional: Alkaline AA batteries x 3
Sampling	Standard: Internal, automatic sample pump for "active" sampling of target environment Optional: Diffusion for quick, direct reading.
Memory	> 1 million data points data logging to SD flash card <i>(optional)</i>
Calibration	Automated through keypad
Information Recording	12 bit, multi-channel, user configurable with removable flash card 2 GB. YES Logger package option includes 2 GB SD flash card, USB cable, YES Viewer software, and SD flash card reader.
Communication	Miniature USB port for changing settings and configuring logging functions and auxiliary port for using additional sensors (i.e. YESDUST)
Audible	Internal 80 Db @ 4'. One set point adjustment. Audible can be switched off through menu.

ENVIRONMENTAL (sensor dependant)

Operating Temperature	5°C to 50°C (41°F to 122°F)
Humidity	0 - 99% RH non-condensing

CERTIFICATION

CE Certified	CE standards for safety: I.S. EN61010-1:2001 (Ed.2)		
	CE standards for emissions: EN 50270:2006 CE standards for immunity: EN 50270:2006		
	ce standards for innihulinty. EN 50270.2000		

PRODUCT CODES

Temperature & RH sensors, internal pump, rechargeable batteries (3 x AA NiMH),	YESAIR
battery charger, capacity for 5 gas sensors	
Temperature & RH sensors, diffuser cap, rechargeable batteries (3 x AA NiMH), battery charger, capacity for 5 gas sensors	YESAIR-D

OPTIONS	
Ammonia (NH ₃) electrochemical, 0 - 50 ppm	PNP-H
Arsine (AsH ₃) electrochemical, 0 - 2 ppm	PNP-R
Carbon dioxide (CO ₂) infrared, 0 - 5,000 ppm	PNP-A+
Carbon dioxide (CO ₂) infrared, 0 - 10,000 ppm	PNP-A1
Carbon dioxide (CO ₂) infrared, 0 - 20% volume	PNP-A2
Carbon dioxide (CO ₂) infrared, 0 - 5% volume	PNP-B
Carbon dioxide (CO ₂) infrared, 0 - 100% volume	PNP-B1
Carbon monoxide (CO) electrochemical, 0 - 50 ppm	PNP-C
Carbon monoxide (CO) electrochemical, 0 - 50 ppm (H ₂ compensated for use in H ₂ background)	PNP-C1
Chlorine (Cl ₂) electrochemical, 0 - 5 ppm	PNP-I
Chlorine dioxide (ClO ₂), electrochemical, 0 - 1 ppm	PNP-J
Combustibles (catalytic), 0 - 100% LEL	PNP-X
Ethylene (C ₂ H ₄), 0 - 500 ppm	PNP-E1
Ethylene oxide (C ₂ H ₄ O), 0 - 20 ppm	PNP-E2
Fluorine (F ₂) electrochemical, 0 - 2 ppm	PNP-S
Formaldehyde (CH ₂ 0) electrochemical, 0 - 10 ppm	PNP-Q
Hydrogen (H ₂) electrochemical, 0 - 1,000 ppm	PNP-K
Hydrogen chloride (HCI) electrochemical, 0 - 30 ppm	PNP-M
Hydrogen cyanide (HCN) electrochemical, 0 - 100 ppm	PNP-N
Hydrogen fluoride (HF) electrochemical, 0 - 10 ppm	PNP-0
Hydrogen sulphide (H ₂ S) electrochemical, 0 - 50 ppm	PNP-L
Nitric oxide (NO) electrochemical, 0 - 100 ppm	PNP-E
Nitrogen dioxide (NO ₂) electrochemical, 0 - 5 ppm	PNP-D
Oxygen (02) electrochemical, 0 - 25% volume	PNP-F
Ozone (03) electrochemical, 0 - 1 ppm	PNP-G
Phosphine (PH ₃) electrochemical, 0 - 1 ppm	PNP-V
Silane (SiH,) electrochemical, 0 - 1 ppm	PNP-W
Sulphur dioxide (SO ₂) electrochemical, 0 - 20 ppm	PNP-P
TVOCs (PID), 0 - 300 ppm	PNP-Y+
TVOCs (PID), 0 - 50 ppm	PNP-Z+
External mounted nickel metal hydride pack	YESAIR BATT OPTION

ACCESSORIES

Hard shell carrying case for YESAIR	6010.20
YES logger package, 2 GB flash card, USB cable, YES Viewer software, SD flash card reader	YESAIR-LGRPKG
Handheld probe 10" with 30" of sample hose	YES-HHPROBE-10
External lead acid battery, in carrying case w charger	YES-AIR BATT EXT
YES Viewer information logging software CD	YES-SFTWRE

C	E
C	E

Portable IAQ Instruments - GAS DETECTION DATASHEET YES Plus LGA 15-Channel IAQ Monitor

YES Plus LGA is a multi-gas air quality monitoring and information recording instrument that simultaneously measures and records up to fifteen sensors. With more than 30 different plug and play sensors to select from, users can accurately monitor more within a single, easy to carry instrument.

Featuring a fifteen channel sensor capacity including RH and temperature, YES Plus LGA can handle up to 12 additional plug & play sensors consisting of a maximum of eight electrochemical toxic gas or oxygen sensors, four high current draw sensors such as an infrared PID or catalytic, and a remote particulate sensor such as the YESDUST.

The large, backlit, multi-line scrolling LCD display indicates the sensor types installed and measured values for each gas, battery status and more. The system utilizes a long life rechargeable NiMH battery pack providing more than 24-hours of run time, depending on sensor array installed. The user can also set one alarm level for each gas to activate the internal audible alarm. The system is housed in a rugged ABS enclosure with swivel handle to act as a stand support or for carrying the instrument.

An air sample from the target environment is delivered to the sensors through "active sampling" by the internal sample draw pump. More than a million data points can be logged and stored on a built-in SD flash card for convenience. With a few simple mouse clicks, users can analyze and graph data using the optional YES Viewer PC software and an SD card reader. Alternatively, data could be downloaded through the instrument using a standard USB connection.

KEY FEATURES

- » 15 sensor capacity
- » > 30 plug & play sensor choices
- » Extensive, easy to use menu system
- » Rugged ABS enclosure with swivel handle acts as stand support
- » Internal sample pump with inline filter
- » Large, backlit, multi-line, LCD display
- » Data logging to SD flash card
- » Menu control positive sampling
- » RoHS compliant circuit boards

APPLICATIONS

- » Residential Buildings
- » Commercial Buildings
- » Hospitals
- » Laboratories
- » Research Facilities
- » Parking Garages
- » ... and many more

TECHNICAL DRAWING

Portable IAQ Instruments - GAS DETECTION DATASHEET YES Plus LGA 15-Channel IAQ Monitor

TECHNICAL SPECIFICATIONS

MECHANICAL

	Rugged ABS (UL94-HB rated)
Enclosure	c/w multi-position, adjustable aluminum
	carrying hangle/stand
Weight	1.7 kg (3.6 lb)
Size	10.0" x 3.5" x 7.0" (254 mm x 89 mm x 178 mm)

ELECTRICAL

	Rechargeable NiMH battery pack:
	18 - 24 hours of continuous operation time
Power	(dependent upon the sensor array
	installed) c/w plug-in battery charger /
	12 VDC wall adapter (100 - 240 VAC; 50 - 60 Hz)
Circuit	Powerful microprocessor, user
	configurable
C. I'	Internal, automatic sample pump for
sampling	"active" sampling of target environment

ENVIRONMENTAL (sensor dependant)

Operating Temperature	5°C to 50°C (41°F to 122°F)
Humidity	0 - 99% RH non-condensing

CERTIFICATION

CE	Pending

חח	2	n		CT	CO	DEC
rĸ	U	ν	U	CI	CU	DES

Temperature, RH sensors, internal pump,	
inline filter, rechargeable battery, internal data	YES Plus LGA
logging, capacity for 12 gas sensors	

OPTIONS

of flows	
Ammonia (NH ₃) electrochemical, 0 - 50 ppm	PNP-H
Arsine (AsH ₃) electrochemical, 0 - 2 ppm	PNP-R
Carbon dioxide (CO ₂) infrared, 0 - 5,000 ppm	PNP-A+
Carbon dioxide (CO ₂) infrared, 0 - 10,000 ppm	PNP-A1
Carbon dioxide (CO ₂) infrared, 0 - 20% volume	PNP-A2
Carbon dioxide (CO ₂) infrared, 0 - 5% volume	PNP-B
Carbon dioxide (CO ₂) infrared, 0 - 100% volume	PNP-B1
Carbon monoxide (CO) electrochemical, 0 - 50 ppm	PNP-C
Carbon monoxide (CO) electrochemical, 0 - 50 ppm (H ₂ compensated for use in H ₂ background)	PNP-C1
Chlorine (Cl ₂) electrochemical, 0 - 5 ppm	PNP-I
Chlorine dioxide (ClO ₂), electrochemical, 0 - 1 ppm	PNP-J
Combustibles (catalytic), 0 - 100% LEL	PNP-X
Ethylene (C ₂ H ₄), 0 - 500 ppm	PNP-E1
Ethylene oxide (C ₂ H ₄ 0), 0 - 20 ppm	PNP-E2
Fluorine (F ₂) electrochemical, 0 - 2 ppm	PNP-S
Formaldehyde (CH ₂ O) electrochemical, 0 - 10 ppm	PNP-Q
Hydrogen (H,) electrochemical, 0 - 1,000 ppm	PNP-K
Hydrogen chloride (HCI) electrochemical, 0 - 30 ppm	PNP-M
Hydrogen cyanide (HCN) electrochemical, 0 - 100 ppm	PNP-N
Hydrogen fluoride (HF) electrochemical, 0 - 10 ppm	PNP-0
Hydrogen sulphide (H ₂ S) electrochemical, 0 - 50 ppm	PNP-L
Nitric oxide (NO) electrochemical, 0 - 100 ppm	PNP-E
Nitrogen dioxide (NO_2) electrochemical, 0 - 5 ppm	PNP-D
Oxygen (0 ₂) electrochemical, 0 - 25% volume	PNP-F
Ozone (03) electrochemical, 0 - 1 ppm	PNP-G
Phosphine (PH ₃) electrochemical, 0 - 1 ppm	PNP-V
Silane (SiH ₄) electrochemical, 0 - 1 ppm	PNP-W
Sulphur dioxide (SO_2) electrochemical, 0 - 20 ppm	PNP-P
TVOCs (PID), 0 - 300 ppm	PNP-Y+
TVOCs (PID), 0 - 50 ppm	PNP-Z+

ACCESSORIES

Hard shell carrying case for YES Plus LGA	718
YES logger package, 2 GB flash card, USB cable, YES Viewer software, SD flash card reader	YESAIR-LGRPKG
Handheld probe 10" with 30" of sample hose	YES-HHPROBE-10
YES Viewer information logging software CD	YES-SFTWRE

CE

Industry Abbreviations & Product Acronyms

A	Amperes	COCl ₂	Phosgene
A/C	Air Conditioning	CSA	Canadian Standards Associaation
ABS	Acrylonitrile-Butadiene-Styrene	DC	Direct Current
amp	Amperes	DDC	Direct Digital Controller
AsH ₃	Arsine	DST	Digital Signal Transmitter
ASHRAE	American Society of Heating,	EC	Electrochemical
	Refrigerating and Air Conditioning Engineers	EEPROM	Electrically Erasable Programmable Read Only
AST	Analog Signal Transmitter		Memory
ATW	Analog Two Wire	EMC	Electromagnetic Compatibility
avg	Average	EN	European Norm
BACnet ®	Building Automation and Control	ET0	Ethylene Oxide
	Networking	EU	European Union
BMS	Building Management System	F	Fahrenheit
BST	BACnet [®] Signal Transmitter	F ₂	Fluorine
BTL	BACnet [®] Testing Laboratories	GB	Gigabyte
BTU	British Thermal Unit	GEM	Gas Emissions Monitor
C	Celsius	H ₂	Hydrogen
C_2H_4	Ethylene	H,S	Hydrogen Sulphide
CAT	Catalytic	НСНО	Formaldehyde
CH ₂ 0	Formaldehyde	HCN	Hydrogen Cyanide
CH4	Methane	HE	High Efficiency
CE	Communaute Europeenne	HEPA	High Efficiency Particulate Air
CEF	Calibration Extending Firmware	HF	Hydrogen Fluoride
CET or CETCI	Critical Environment Technologies Canada Incorporated	HPU	Heat Pump Unit
cfm	Cubic Feet Per Minute	HVAC	Heating, Ventilation, and Air
CI,	Chlorine	H7	Hertz
CIO,	Chlorine Dioxide	140	Indoor Air Quality
cm	Centimeters	IP	Ingress Protection
C0	Carbon Monoxide	 IR	Infrared
C0 ₂	Carbon Dioxide	kg	Kilograms

72 | © 2012 Critical Environment Technologies Canada Inc. | Data subject to change without notice. | Toll Free: +1.877.940.8741 | www.critical-environment.com

lbs	Pounds	0,	Oxygen
LCD	Liquid Crystal Display	0,	Ozone
LED	Light Emitting Diode	PAC	Programmable Analog Controller
LEL	Lower Explosive Limit	PDC	Programmable Digital Controller
LGA	Landfill Gas Analyzer	PET	Parkade Emissions Transmitter
LPM	Liters Per Minute	PH ₃	Phosphine
LPT	Low Power Transmitter	PID	Photolonization Detector
m	Meters	PPM or ppm	Parts Per Million
mA	Milliampere	psi	Pounds Per Square Inch
MAC	Mini Analog Controller	PVC	Polyvinyl Chloride
max	Maximum	QA	Quality Assurance
MB	Megabyte	REL	Recommended Exposure Limit
ME	Medium Efficiency	RH	Relative Humidity
MERV	Minimum Efficiency Reporting	SCS	Self Contained System
	Value	SiH4	Silane
min	Minimum	SPDT	Single Pole, Double Throw
mm	Millimeters	SO ₂	Sulfur Dioxide
MS/TP	Master-Slave / Token-Passing	SS	Solid State
N ₂ H ₄	Hydrazine	SSM	Smart Sensor Module
N ₂ 0	Nitrious Oxide	STEL	Short Term Exposure Limit
NDIR	Non-Dispersive Infrared	TLV	Threshold Limit Value
NEC	National Electric Code	TVOC	Total Volative Organic Compound
NEMA	National Electrical Manufacturers	TWA	Time Weighted Average
ΝΕΡΔ	National Fire Protection Agency	UL	Underwriters Laboratories Inc.
NH	Ammonia	USB	Universal Serial Bus
NiMH	Nickel Metal Hydride	VAC	Volts Alternating Current
NIOSH	National Institute of Occupational	VDC	Volts Direct Current
NIOSII	Safety and Health	VOC	Volatile Organic Compound
NO ₂	Nitrogen Dioxide	W	Watts
NO _x	Nitrogen Oxides	WWC	Wired Wireless Controller
NTC	Negative Temperature Coefficient	ZEB	Zero Energy Building

© 2012 Critical Environment Technologies Canada Inc. | Data subject to change without notice. | Toll Free: +1.877.940.8741 | www.critical-environment.com | 73

Glossary of Terms

% Volume

The percentage of a gas in the total volume of air.

Breathing Zone

The breathing zone refers to the area 4 - 6 feet from the floor, where most human breathing takes place. This is a good default location for sensors.

Calibration

Instrument calibration refers to exposing the instrument to a known quantity of the measured substance (real or simulated) and resetting the instrument if required. This verifies that the instrument is operating properly and adjusts for any sensor drift. For gas detection equipment this involves exposing the sensor to a known concentration of the target gas, usually from a calibration gas cylinder, and resetting the instrument to adjust for sensor drift.

Combustible Gases

Combustible gases are those that are monitored because they present a risk of explosion or fire.

Cross-sensitivity

Cross-sensitivity refers to the response of a sensor to a gas other than the target gas (also called an interference gas).

Hazardous Area (Class-1)

An area in which flammable gas or vapour could exist under normal or abnormal operations in potentially explosive concentrations. Classified as probability of occurance (Class) and type of material (Group) in the NEC.

Indoor Air Quality (IAQ)

IAQ is the physical, chemical, and biological characteristics of indoor air. This environment is created by the interaction of the site, the climate, the building system, the potential contaminant sources (ie: furnishings, moisture sources, work processes and activities, and outdoor pollutants) and the building occupants.

Ignition-capable

Equipment that may have sparking contacts or hot surfaces that release sufficient energy in normal operation to ignite a flammable atmosphere.

Intrinsically safe

Equipment and wiring not capable of releasing sufficient electrical or thermal energy under normal or abnormal conditions to cause ignition of a specific hazardous atmospheric mixture in its most easily ignited concentration (NEC 1978).

LEL

An abbreviation for Lower Explosive Limit, which is the minimum concentration of each gas in air that must be present for combustion or explosion to occur.

% LEL refers to a method of measuring the concentration of a combustible gas where the range of the sensor is set to correspond with the concentration of gas that is below the explosive range. In this case the Lower Explosive Limit equals 100% LEL.

National Electric Code (NEC)

A compilation of requirements for electrical installation practices, predominately employed in the USA as a criteria for such installations. Revised by the NEC Committee for the National Fire Protection Agency (NFPA).

National Electrical Manufacturer's Association (NEMA)

A trade association propagating standards for industrial electrical equipment, notably enclosure.

Nitrogen Oxides

A group of compounds most commonly found in vehicle exhaust, where nitrogen oxides are a byproduct of combustion formed from the nitrogen and oxygen in the air. In exhaust, the most common is nitric oxide (NO) followed by nitrogen dioxide (NO₂). Other nitrogen oxides found in much smaller quantities are N₂O, N₂O₄, N₂O₄, N₂O₄, N₂O₄, and NO₃.

Nonincendive

Equipment that will not release sufficient energy in its normal working condition to ignite a specfic hazardous atmospheric mixture.

Normally Open/Closed Relay Contacts

Condition of relay contacts, open or closed, when power to the equipment is off.

NO.

An abbreviation for nitric oxide.

ppm

Parts Per Million. 100% volume equals 1,000,000 "parts", 1% volume equals 10,000 "parts".

Refrigerant

The fluid used for heat transfer in a refrigerating system; the refrigerant absorbs heat at low temperature and low pressure and transfers heat at higher temperature and higher pressure, usually with changes of state.

Relay Contacts Dry

No power is supplied to be switched by the relay contacts. Opposed to powered contacts.

SENSOR MOUNTING Heights & Location

The sensor mounting height depends on the density of the gas relative to air. Heavier than air gases should be detected 6 inches from the floor, lighter than air gas sensors should be placed on or near the ceiling, and gases which have a density close to that of air should have sensors installed in the "breathing zone" 4 - 6 ft from the floor. The breathing zone refers to the area 4 - 6 ft from the floor, where most human breathing takes place. This is a good default location for sensors, as many gases are often well dispersed in air.

Consideration should be given to accessibility for calibration when locating sensors. For example, a sensor mounted 30 ft off the floor will be difficult or even hazardous to service.

Sensors should be placed near the source of the gas if possible. For example, near the compressor or piping.

Sensors should not be placed near ventilation fans or openings to outside. They should be placed in areas where there is good air circulation, but not in the path of rapidly moving air. Pay particular attention to "dead air spots" where there is little or no air movement.

Mounting Heights for Common Gases:

Breathing Zone (4 - 6 ft above floor)

Carbon Monoxide	CO
Carbon Dioxide	C0 ₂
Oxygen	02
Nitric Oxide	NO
Nitrogen Dioxide	NO ₂
Hydrogen Sulphide	H ₂ S

Near the Ceiling

Ammonia	NH3
Methane (Natural Gas)	CH_4
Hydrogen	H2

Near the Floor (6" above floor)

Carbon Dioxide (Industrial or beverage applications)	C0 ₂
Chlorine	Cl ₂
Ozone	0,
Propane	$C_{3}H_{8}$
Refrigerants (Freons)	

© 2012 Critical Environment Technologies Canada Inc. | Data subject to change without notice. | Toll Free: +1.877.940.8741 | www.critical-environment.com | 75

FREQUENTLY ASKED QUESTIONS (FAQ) Fixed Gas Detection Systems

How far apart should the sensors be?

This depends on the application, but for most commercial vehicle exhaust applications, each sensor should "cover" 5,000 - 7,000 ft². This translates to about 70 - 80 ft apart, or a 35 - 40 ft radius. In more hazardous areas, the sensor coverage area should be reduced.

What should the mounting height of the sensors be?

This depends on the density of the gas relative to air. Heavier than air gases should be detected 6 inches from the floor, lighter than air gas sensors should be placed on or near the ceiling, and gases which have a density close to that of air should have sensors installed in the "breathing zone" 4 - 6 ft from the floor. Consider accessibility for calibration when locating sensors.

Are there other considerations for locating sensors?

Sensors should not be placed near ventilation fans or openings to outside. They should be placed in areas where there is good air circulation, but not in the path of rapidly moving air. Pay particular attention to "dead air spots" where there is little or no air movement.

What is the breathing zone?

The breathing zone refers to the area 4 - 6 ft from the floor, where most human breathing takes place. This is a good default location for vehicle exhaust monitoring and oxygen sensors.

Why are different kinds of sensors used?

Most gases can only be detected by 1 or 2 sensor types. Consideration is given to required accuracy and specificity, sensor life expectancy, and finally cost.

What gases can be detected with CETCI's fixed gas detection equipment?

Ammonia	NH ₃
Carbon Dioxide	C0 ₂
Carbon Monoxide	C0
Chlorine	Cl ₂
Combustible Gases	multiple gases
Ethylene	C ₂ H ₄
Ethylene Oxide	C_2H_40
Formaldehyde	CH ₂ 0
Hydrogen	H ₂
Hydrogen Sulphide	H ₂ S
Methane	CH ₄
Nitric Oxide	NO
Nitrogen Dioxide	NO ₂
Oxygen	02
Ozone	0,
Propane	C ₃ H ₈
Refrigerants	R12, R22, R114, R123, R134A, R401A, R401B, R402A, R404A, R407C, R408A, R409A, R410A,
	R422A, R422D, R438A,
	R500, R502, R507, R507A
Sulphur Dioxide	SO ₂
TVOC	

Don't see what you're looking for? Contact us at www. critical-environment.com/contact.

Are some gases lighter than others?

All substances have a molecular weight determined by the number and type of atoms in the molecule. In a gaseous state, the larger and heavier the molecule, the heavier the gas.

What are the molecular weights of gases?

Molecular weight of some common gases:

Air	29
Ammonia (NH ₃)	17
Carbon Monoxide (CO)	28
Carbon Dioxide (CO ₂)	44
Chlorine (Cl ₂)	71
Hydrogen (H ₂)	2
Hydrogen Sulphide (H ₂ S)	34
Methane (CH ₄)	16
Oxygen (0 ₂)	32
Ozone (O ₃)	48
Nitric Oxide (NO)	30
Nitrogen Dioxide (NO ₂)	46
Propane (C ₃ H ₂)	44

Are there many types of sensors used for gas detection?

There are many sensors used to detect gases. Some gases can be detected by some sensors and not by others, and some sensors are more accurate or gasspecific than others. Types of sensors include Solid State (also known as Metal Oxide Semiconductor), Electrochemical, Catalytic, Infrared, PID and others.

What are advantages and disadvantages of... Solid State (MOS)

Advantages

Low cost, long life, quite resistant to poisoning.

Disadvantages

Broad spectrum, non-specific, not as accurate as other types.

Electrochemical

Advantages

Accurate, repeatable, more gas specific, defined cross sensitivities.

Disadvantages

Relatively short life, moderately expensive.

Catalytic

Advantages

Range 0 - 100% LEL for many combustible gases, accurate, long life.

Disadvantages Moderately expensive, can be poisoned.

Infrared

Advantages Very gas specific, best way to detect CO₂, very accurate & stable, long life. Disadvantages Expensive.

Does gas detection equipment need maintenance and calibration?

Yes. Maintenance on a properly installed, quality system is minimal and need only consist of a visual inspection and verification of operation. Calibration frequency depends on sensor type and application.

Typical frequency for commercial applications is 1 - 2 times per year. For areas where health hazards may exist, 3 - 4 times per year.

Industrial applications 4 - 6 times per year or even monthly.

FREQUENTLY ASKED QUESTIONS (FAQ) Fixed Gas Detection Systems

What is calibration?

Instrument calibration refers to exposing the instrument to a known quantity of the measured substance (real or simulated) and resetting the instrument if required.

This verifies that the instrument is operating properly and adjusts for any sensor drift. For gas detection equipment this involves exposing the sensor to a known concentration of the target gas, usually from a calibration gas cylinder, and resetting the instrument to adjust for sensor drift.

Can gas detection equipment produce energy savings?

Yes. A properly installed, maintained and calibrated gas detection system can produce significant energy savings by running ventilation fans only when required, minimizing energy usage and expense.

What is cross-sensitivity?

Cross-sensitivity refers to the response of a sensor to a gas other than the target gas (also called an interference gas).

What are combustible gases?

Combustible gases are those that are monitored because they present a risk of explosion or fire.

l get confused between CO and CO₂ - what's the difference?

CO is the chemical symbol for Carbon Monoxide which is a byproduct of combustion.

CO₂ is the chemical symbol for Carbon Dioxide which usually comes from human respiration in commercial applications and is used as an indicator for Indoor Air Quality.

Where does carbon monoxide (CO) come from?

Usually occurs as a product of combustion of an organic compound. Most commonly found in vehicle exhaust.

Where does CO, come from?

Carbon Dioxide is a naturally occurring gas in air (less than 1%) and since it is exhaled during respiration, it is often used as an indicator of Indoor Air Quality. CO_2 is produced in the combustion of organic compounds and it is also formed during fermentation. CO_2 is used in many industrial and food & beverage applications and may present a hazard if it leaks from cylinders.

What are Nitrogen Oxides?

A group of compounds most commonly found in vehicle exhaust, where Nitrogen Oxides are a byproduct of combustion formed from the Nitrogen and Oxygen in the air.

In exhaust, the most common is Nitric Oxide (NO) followed by Nitrogen Dioxide (NO₂). Other Nitrogen Oxides found in much smaller quantities are N_20 , N_20_3 , N_20_4 , N_20_5 , N_30_4 , and $N0_3$.

Where do NO and NO, come from?

Nitric Oxide (NO) and Nitrogen Dioxide (NO₂) usually occur as a byproduct of combustion, often from diesel fuel powered vehicle exhaust. (see Nitrogen Oxides).

What is NO_x?

 NO_x is an abbreviation for Nitrogen Oxides. (see Nitrogen Oxides).

What does ppm mean?

Parts Per Million. 100% volume equals 1,000,000 "parts", 1% volume equals 10,000 'parts'.

Where does H₂S come from?

Hydrogen Sulphide is commonly produced from decay of organic matter and in industrial processes such as Pulp & Paper and Oil & Gas. It is often found in 'Sewer Gas'.

What does % volume mean?

The percentage of a gas in the total volume of air.

What does % LEL mean?

Combustible gases form flammable mixtures with air. For each gas there is an explosive range within which the fuel to air mixture will support combustion. LEL is an abbreviation for Lower Explosive Limit, which is the minimum concentration of each gas in air that must be present for combustion or explosion to occur.

% LEL refers to a method of measuring the concentration of a combustible gas where the range of the sensor is set to correspond with the concentration of gas that is below the explosive range. In this case the Lower Explosive Limit equals 100 % LEL.

What gases are present in arenas?

Zamboni exhaust gases: CO, Nitrogen Oxides

Combustible gases from Zamboni fuel leakage: Propane, Gasoline, Deisel, Methane

What gases are present in parking garages?

Vehicle exhaust gases: CO, Nitrogen Oxides

Combustible gases from fuel leakage: Propane, Gasoline, Methane

Interference gases: Solvent fumes from paint or sealer

What gases are present in chiller rooms? Chiller room gases: Ammonia, Refrigerants

What gases are present in swimming pools?

Water purification chemicals: Chlorine, Ozone

What gases are present in warehouses?

Forklift or truck exhaust gases: CO, Nitrogen oxides

Interference gases: Solvent fumes from warehoused products

What gases are present in repair garages?

Vehicle exhaust gases: CO, Nitrogen Oxides

Combustible gases from fuel leakage: Propane, Gasoline, Methane

Interference gases: Solvent fumes

FREQUENTLY ASKED QUESTIONS (FAQ) Portable Indoor Air Quality Monitors

Indoor air quality is the physical, chemical, and biological characteristics of indoor air. This environment is created by the interaction of the site, the climate, the building system, the potential contaminant sources (ie: furnishings, moisture sources, work processes and activities, and outdoor pollutants) and the building occupants.

What is an Indoor Air Quality Monitor and how can it help me?

An indoor air quality monitor samples the air continuously until downloaded; producing an analysis of the air quality based on the channels/gases supplied.

YES Monitors measure IAQ on 3 basic levels; Temperature, Relative Humidity and Carbon Dioxide. By recording samples from all three variables simultaneously over a period of time, one is able to analyze where and when the air quality is poor in the workplace. Once the source has been determined then proper ventilation can be installed or altered.

When should you purchase an IAQ Monitor?

Prior to introducing IAQ monitors into the investigation, one should have a comprehensive understanding of how the building operates and the nature of the complaints. An overview of the ventilation system will help to define where you should place the YES Air Quality Monitors to best address the issues at hand.

Who uses these monitors?

Initially these monitors were developed to assist property managers, building maintenance staff, health and safety officials, and consultants working in the occupational environment field. Although now various companies, corporations and schools use IAQ monitors to ensure proper air quality in the workplace.

What gases can be detected with CETCI's portable indoor air quality instruments?

Ammonia	NH ₃
Arsine	AsH ₃
Carbon Dioxide	C0 ₂
Carbon Monoxide	СО
Chlorine	Cl ₂
Chlorine Dioxide	CIO2
Combustible Gases	n/a
Ethylene	C_2H_4
Ethylene Oxide	C ₂ H ₄ 0
Fluorine	F ₂
Formaldehyde	CH ₂ 0
Hydrogen	H ₂
Hydrogen Chloride	HCI
Hydrogen Cyanide	HCN
Hydrogen Fluoride	HF
Hydrogen Sulphide	H ₂ S
Nitric Oxide	NO
Nitrogen Dioxide	NO ₂
Oxygen	0,
Ozone	0,
Phosphine	PH ₃
Silane	SiH ₄
Sulphur Dioxide	SO ₂
TVOC	

Don't see what you're looking for? Contact us at www. critical-environment.com/contact.

Why measure Temperature and Relative Humidity?

ASHRAE Standard 55-1992, Thermal Environmental Conditions for Human Occupancy, sets guidelines intended to achieve thermal conditions that at least 80% of the occupants would find comfortable.

ASHRAE's recommended RH levels are between 25 - 60%.

** Low RH causes skin to become dry leading to chapping and irritation, increases static electricity hindering computer operation.

** High RH levels can result in condensation and thus the development of molds and fungi.

High temperature and humidity levels can increase the concentrations of some pollutants.

To obtain an accurate reading of pollutants levels, it is necessary to take into account these levels and balance the temperature and relative humidity with the carbon dioxide levels.

Why use Carbon Dioxide levels to determine ventilation?

Carbon dioxide is an odorless, colorless gas produced through human metabolism.

CO₂ provides the most accurate readings for determining when ventilation should be increased and decreased. Saving energy and improving air quality concurrently. High CO₂ levels usually coincide with high indoor contaminates, due to a problem with the HVAC system.

Facts on CO₂

- » Producers of CO₂: people and combustion of fossil fuels (gas & oil furnaces/heaters)
- » The average person performing light office work produces CO₂ at a rate of 0.3L / min.
- » Normal part of the atmosphere at 330 ppm to 350 ppm
- » Acceptable Office levels 600 800 ppm

What problems does poor indoor air quality cause?

Many experience these symptoms without realizing that they can be alleviated through proper ventilation.

Sick Building Syndrome

A set of symptoms related to chemical, particulate or biological exposure that cannot be related to a specific cause but are alleviated when the occupant leaves the building. Individuals report symptoms such as headaches, nausea, fatigue and drowsiness, eye, nose, and throat irritation.

Building-Related Illness

A specific illness with a known cause that is a result of exposure to an indoor agent. Examples are Legionnaire's disease and Pontiac Fever.

Product Codes

GAS DETECTION CONTROLLER

PDC Multi-Channel Controller

PDC series, up to 2 analog inputs	PDC-A02
PDC series, up to 8 analog inputs	PDC-A08
PDC series, up to 8 digital inputs	PDC-D08
PDC series, up to 24 digital inputs	PDC-D24
PDC series, up to 16 digital inputs	PDC-D16
PDC series, up to 32 digital inputs	PDC-D32
PDC series, up to 64 digital inputs	PDC-D64
PDC series, up to 96 digital inputs	PDC-D96
PDC series, up to 128 digital inputs	PDC-D128

Options (to be added to the end of the product codes above)

Industrial horn, 103 dB, remote	Н
BACnet [®] output module option	BAC
Strobe light, 4" diameter, remote	L
Water / dust tight enclosure	W

Accessories

Relay module, 8 relays each, remote	RRM-8
Analog output module, 8 4 - 20 mA outputs each	RAO-8
Power supply, 24 V, remote	RPS-24V
CAN network bridge	CNB-2
Strobe & horn combo, remote	RSH-24
Annunciator, remote	RAP-128
Metal protective guard, large, 16 gauge, galvanized metal guards for controllers	SCS-8000-SPG

SELF CONTAINED GAS DETECTORS

GEM-II Multi-Channel Controller

GEM series, integral sensor, carbon monoxide (CO)	GEM-AECO
GEM series, integral sensor, nitrogen dioxide (NO ₂)	GEM-AEND
GEM series, integral sensor, nitric oxide (NO)	GEM-AENO
GEM series, integral sensor, oxygen (0,)	GEM-AE02
GEM series, integral sensor, sulphur dioxide (SO ₂)	GEM-AESO
GEM series, remote sensor	GEM-B
GEM series, remote sensor, combustible gases (solid state)	GEM-BSCB
GEM series, remote sensor, methane (CH ₄)	GEM-BSCB
GEM series, remote sensor, propane (C ₃ H ₈)	GEM-BSCB
GEM series, remote sensor, refrigerants (R12, R22, R134A, R401A, R402A, R404A,	GEM_RSR2
R407C, R410A, R422A, R422D, R438A, R507)	
GEM series, remote sensor, TVOCs (solid state)	GEM-BSOS

82 | © 2012 Critical Environment Technologies Canada Inc. | Data subject to change without notice. | Toll Free: +1.877.940.8741 | www.critical-environment.com

GEM series, integral & remote sensors, carbon monoxide (CO)	GEM-DECO-ECO
GEM series, integral carbon monoxide (CO), remote combustible gases (solid state)	GEM-DECO-SCB
GEM series, integral carbon monoxide (CO), remote methane (CH ₄)	GEM-DECO-SCB
GEM series, integral carbon monoxide (CO), remote propane $(C_{3}H_{g})$	GEM-DECO-SCB
GEM series, integral carbon monoxide (CO), remote nitrogen dioxide (NO,)	GEM-DECO-END
GEM series, integral carbon monoxide (CO), remote nitric oxide (NO)	GEM-DECO-ENO
GEM series, integral & remote sensors, oxygen (0,)	GEM-DE02-E02
GEM series, integral & remote sensors, nitrogen dioxide (NO ₃)	GEM-DEND-END
GEM series, integral & remote sensors, nitric oxide (NO)	GEM-DENO-ENO
GEM series, integral, carbon monoxide (CO) & nitrogen dioxide (NO ₂)	GEM-EECO-END
GEM series, integral, carbon monoxide (CO) & nitric oxide (NO)	GEM-EECO-ENO
GEM series, integral, carbon monoxide (CO) & oxygen (O2)	GEM-EECO-EO2
GEM series, integral, carbon monoxide (CO) & sulphur dioxide (SO ₂)	GEM-EECO-ESO
GEM series, integral, nitrogen dioxide (NO ₃) & sulphur dioxide (SO ₃)	GEM-EEND-ESO

Options (to be added to the end of the product codes above)

-		
	LED digital display	Ν
	120 VAC powered version	J
	Water / dust tight enclosure	W
	Splash guard (for watertight enclosure only)	S
	Enclosed external transformer, 120 - 22 VAC	TIB-2250

Accessories

Calibration kit, 15 L or 17 L cylinders, 0.5 LPM flow regulator	CET-8000-CK1
Calibration kit, 34 L, 58 L, 75 L, or 103 L cylinders, 0.5 LPM flow regulator	CET-7150-CK1
Metal protective guard, small, 16 gauge, galvanized metal guards for transmitters	SCS-8000-RSG

GAS DETECTION TRANSMITTERS

AST Analog Transmitters

AST series, ammonia (NH,), 0 - 500 ppm	AST-EAM
AST series, carbon monoxide (CO), 0 - 200 ppm	AST-ECO
AST series, combustible gases (solid state), 0 - 50% LEL	AST-SCB
AST series, combustible gases (an letic), 0 - 100% [E]	AST-CCB
AST series, chlorine (Cl _.), 0 - 5 ppm SCONUTURE	AST-ECL
AST series, ethylene (C, H_a) , 0 - 2,000 ppm	AST-EC4
AST series, formaldehyde (CH ₂ O), 0 - 10 ppm	AST-EFO
AST series, hydrogen (H ₂), 0 - 2,000 ppm	AST-EH2
AST series, hydrogen sulphide (H ₂ S), 0 - 50 ppm	AST-EHS
AST series, methane (CH ₄), 0 - 50% LEL	AST-SCB
AST series, nitrogen dioxide (NO ₂), 0 - 10 ppm	AST-END
AST series, nitric oxide (NO), 0 - 100 ppm	AST-ENO

© 2012 Critical Environment Technologies Canada Inc. | Data subject to change without notice. | Toll Free: +1.877.940.8741 | www.critical-environment.com | 83

Product Codes

AST series, oxygen (0,), 0 - 25% volume	AST-002
AST series, ozone (0,), 0 - 2 ppm	AST-EO3
AST series, propane (C, H _a), 0 - 50% LEL	AST-SCB
AST series, refrigerants (R12, R22, R134A, R401A, R402A, R404A, R407C, R410A, R422A, R422D, R438A, R507), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	AST-SR2
AST series, sulphur dioxide (SO ₂), 0 - 20 ppm	AST-ESO
AST series, TVOCs (solid state), 0 - 500 ppm	AST-SOS
AST series, TVOCs (PID), 0 - 50 ppm	AST-SPL
AST series, TVOCs (PID), 0 - 300 ppm	AST-SPH

Options (to be added to the end of the product codes above)

LED digital display	Ν
Relay, dry contact SPDT, 2 amps @ 28 V	R
Water / dust tight enclosure	W
Splash guard (for watertight enclosure only)	S

Accessories

Calibration kit, 15 L or 17 L cylinders, 0.5 LPM flow regulator	CET-8000-CK1	
Calibration kit, 34 L, 58 L, 75 L, or 103 L cylinders, 0.5 LPM flow regulator	CET-7150-CK1	
Metal protective guard, small, 16 gauge, galvanized metal guards for transmitters	SCS-8000-RSG	

AST-I Industrial Carbon Dioxide (CO₂) Transmitters

AST-I series, industrial carbon dioxide (CO $_3$), watertight housing, 0 - 5% volume CO $_2$	AST-ICD-BW
AST-I series, industrial carbon dioxide (CO ₃), watertight housing, 0 - 100% volume CO ₃	AST-ICD-CW
AST-I series, industrial carbon dioxide (CO ₃), watertight housing, 0 - 100% volume CO ₃	AST-ICD-DW
AST-I series, industrial hydrocarbon gases, watertight housing, 0 - 100% LEL CH_4	AST-IHC-BW
AST-I series, industrial hydrocarbon gases, watertight housing, 0 - 100% volume CH_4	AST-IHC-CW
AST-I series, industrial nitrious oxide (N,0), watertight housing, 0 - 1,000 ppm N,0	AST-INI-EW

Accessories

Calibration kit, 15 L or 17 L cylinders, 0.5 LPM flow regulator	CET-8000-CK1
Calibration kit, 34 L, 58 L, 75 L, or 103 L cylinders, 0.5 LPM flow regulator	CET-7150-CK1
Metal protective guard, small, 16 gauge, galvanized metal guards for transmitters	SCS-8000-RSG

AST-IRT Refrigerant Transmitters

AST-IRT series, chiller room model, Refrigerants R12, 0 - 2,000 ppm	AST-IRT-C-R12
AST-IRT series, freezer i Oringdel Astrineta († 11), 0 3, 60 ppm	AST-IRT-F-R12
AST-IRT series, chiller room moder, kefrigerants R22, U - 2,000 ppm	AST-IRT-C-R22
AST-IRT series, freezer room model, Refrigerants R22, 0 - 2,000 ppm	AST-IRT-F-R22

84 | © 2012 Critical Environment Technologies Canada Inc. | Data subject to change without notice. | Toll Free: +1.877.940.8741 | www.critical-environment.com
AST-IRT series, chiller room model, Refrigerants R114, 0 - 2,000 ppm	AST-IRT-C-R114
AST-IRT series, freezer room model, Refrigerants R114, 0 - 2,000 ppm	AST-IRT-F-R114
AST-IRT series, chiller room model, Refrigerants R123, 0 - 2,000 ppm	AST-IRT-C-R123
AST-IRT series, freezer room model, Refrigerants R123, 0 - 2,000 ppm	AST-IRT-F-R123
AST-IRT series, chiller room model, Refrigerants R134A, 0 - 2,000 ppm	AST-IRT-C-R134A
AST-IRT series, freezer room model, Refrigerants R134A, 0 - 2,000 ppm	AST-IRT-F-R134A
AST-IRT series, chiller room model, Refrigerants R401A (MP89), 0 - 2,000 ppm	AST-IRT-C-R401A
AST-IRT series, freezer room model, Refrigerants R401A (MP89), 0 - 2,000 ppm	AST-IRT-F-R401A
AST-IRT series, chiller room model, Refrigerants R401B (MP66), 0 - 2,000 ppm	AST-IRT-C-R401B
AST-IRT series, freezer room model, Refrigerants R401B (MP66), 0 - 2,000 ppm	AST-IRT-F-R401B
AST-IRT series, chiller room model, Refrigerants R402A (HP80), 0 - 2,000 ppm	AST-IRT-C-R402A
AST-IRT series, freezer room model, Refrigerants R402A (HP80), 0 - 2,000 ppm	AST-IRT-F-R402A
AST-IRT series, chiller room mod LA fo G @ 444 HP 2U Q, CO ppm	AST-IRT-C-R404A
AST-IRT series, freezer room model, Refrigerants R404A (HP62), 0 - 2,000 ppm	AST-IRT-F-R404A
AST-IRT series, chiller room model, Refrigerants R407C (9000), 0 - 2,000 ppm	AST-IRT-C-R407C
AST-IRT series, freezer room model, Refrigerants R407C (9000), 0 - 2,000 ppm	AST-IRT-F-R407C
AST-IRT series, chiller room model, Refrigerants R408A (FX10), 0 - 2,000 ppm	AST-IRT-C-R408A
AST-IRT series, freezer room model, Refrigerants R408A (FX10), 0 - 2,000 ppm	AST-IRT-F-R408A
AST-IRT series, chiller room model, Refrigerants R409A (FX56), 0 - 2,000 ppm	AST-IRT-C-R409A
AST-IRT series, freezer room model, Refrigerants R409A (FX56), 0 - 2,000 ppm	AST-IRT-F-R409A
AST-IRT series, chiller room model, Refrigerants R500, 0 - 2,000 ppm	AST-IRT-C-R500
AST-IRT series, freezer room model, Refrigerants R500, 0 - 2,000 ppm	AST-IRT-F-R500
AST-IRT series, chiller room model, Refrigerants R502, 0 - 2,000 ppm	AST-IRT-C-R502
AST-IRT series, freezer room model, Refrigerants R502, 0 - 2,000 ppm	AST-IRT-F-R502
AST-IRT series, chiller room model, Refrigerants R507A (AZ50), 0 - 2,000 ppm	AST-IRT-C-R507A
AST-IRT series, freezer room model, Refrigerants R507A (AZ50), 0 - 2,000 ppm	AST-IRT-F-R507A

Options (to be added to the end of the product codes)

Water / dust tight ABS fiberglass enclosure	W
Stainless steel enclosure	tbd

AST-IS Carbon Dioxide (CO₂) Transmitters

AST-IS series, carbon dioxide (CO ₂), office wall mount	AST-IS1
AST-IS series, carbon dioxide (CO ₂), office wall mount with LCD digital display	AST-IS2
AST-IS series, carbon dioxide (CO ₂), duct mount	AST-IS3
AST-IS series, carbon dioxide (CO ₂), duct mount with LCD digital display	AST-IS4
AST-IS series, carbon dioxide (CO_2) & temperature sensor, wall mount with IP54 industrial enclosure, LCD digital display & relay	AST-IS5
AST-IS series, carbon dioxide (CO,), wall mount with IP54 industrial enclosure	AST-IS6

Product Codes

AST-IS series, carbon dioxide (CO ₂), wall mount with IP54 industrial enclosure & LCD digital display	AST-IS7
AST-IS series, carbon dioxide (CO ₂) & temperature sensor, duct mount	AST-IS8
AST-IS series, carbon dioxide (CO ₂) & temperature sensor, duct mount with LCD digital display	AST-IS9
AST-IS series, carbon dioxide (CO ₂ , & temperature sensor, wall mount	AST-IS10
AST-IS series, carbon dioxide (CO_2) & temperature sensor, wall mount with LCD digital display	AST-IS11
AST-IS series, carbon dioxide (CO ₂), relay & temperature sensor, wall mount with LCD digital display & relay	AST-IS12
AST-IS series, carbon dioxide (CO ₂) & temperature sensor, wall mount with IP54 industrial enclosure & relay	AST-IS13
AST-IS series, carbon dioxide (CO ₂), wall mount with LCD digital display & audible alarm	AST-IS14
AST-IS series, carbon dioxide (CO ₂), wall mount VAV with hidden LCD digital display	AST-IS15
AST-IS series, carbon dioxide (CO ₂), wall mount VAV with LCD digital display	AST-IS16
AST-IS series, carbon dioxide (CO,), duct mount with LCD digital display	AST-IS17
AST-IS series, carbon dioxide (CO_2), wall mount with IP54 industrial enclosure, 0 - 6% volume	AST-IS18

ATW Two-Wire Transmitters

ATW series, ammonia (NH,), 0 - 500 ppm	ATW-EAM
ATW series, carbon monoxide (CO), 0 - 200 ppm	ATW-ECO
ATW series, chlorine (Cl ₂), 0 - 5 ppm	ATW-ECL
ATW series, ethylene oxide (ETO), 0 - 20 ppm	ATW-EET
ATW series, formaldehyde (CH,Q), 0 - 10 ppm	ATW-EFO
ATW series, hydrogen (H ₂), PPS 60 NTINUEC	ATW-EH2
ATW series, hydrogen sulphide (H ₂ S), 0 - 50 ppm	ATW-EHS
ATW series, nitrogen dioxide (NO ₃), 0 - 10 ppm	ATW-END
ATW series, nitric oxide (NO), 0 - 100 ppm	ATW-ENO
ATW series, oxygen (0,), 0 - 25% volume	ATW-002
ATW series, ozone (0,), 0 - 2 ppm	ATW-E03
ATW series, sulphur dioxide (SO ₂), 0 - 20 ppm	ATW-ESO

Options (to be added to the end of the product codes)

Water / dust tight enclosure	W
Splash guard (for watertight enclosure only)	S

Accessories

Calibration kit, 15 L or 17 L cylinders, 0.5 LPM flow regulator	CET-8000-CK1
Calibration kit, 34 L, 58 L, 75 L, or 103 L cylinders, 0.5 LPM flow regulator	CET-7150-CK1

Metal protective guard, small, 16 gauge, galvanized metal guards for transmitters	SCS-8000-RSG
---	--------------

DST Digital Tr	ransmitters
-----------------------	-------------

DST series, ammonia (NH ₃), 0 - 500 ppm	DST-EAM
DST series, carbon monoxide (CO), 0 - 200 ppm	DST-ECO
DST series, combustible gases (solid state), 0 - 50% LEL	DST-SCB
DST series, chlorine (Cl _.), 0 - 5 ppm	DST-ECL
DST series, ethylene oxide (ETO), 0 - 20 ppm	DST-EET
DST series, hydrogen (H ₂), 0 - 2,000 ppm	DST-EH2
DST series, hydrogen sulphide (H,S), 0 - 50 ppm	DST-EHS
DST series, methane (CH ₄), 0 - 50% LEL	DST-SCB
DST series, nitrogen dioxide (NO ₃), 0 - 10 ppm	DST-END
DST series, nitric oxide (NO), 0 - 100 ppm	DST-ENO
DST series, oxygen (0,), 0 - 25% volume	DST-002
DST series, ozone (0,), 0 - 2 ppm	DST-EO3
DST series, propane (C ₃ H ₈), 0 - 50% LEL	DST-SCB
DST series, sulphur dioxide (SO ₂), 0 - 20 ppm	DST-ESO

Options (to be added to the end of the product codes)

Water / dust tight enclosure	W
Splash guard (for watertight enclosure only)	S

Accessories

Calibration kit, 15 L or 17 L cylinders, 0.5 LPM flow regulator	CET-8000-CK1
Calibration kit, 34 L, 58 L, 75 L, or 103 L cylinders, 0.5 LPM flow regulator	CET-7150-CK1
Metal protective guard, small, 16 gauge, galvanized metal guards for transmitters	SCS-8000-RSG

LPT Economical Transmitters

LPT series, carbon monoxide (CO), 0 - 200 ppm	LPT-ECO
LPT series, nitrogen dioxide (NO ₂), 0 - 10 ppm	LPT-END
-	

S

Options (to be added to the end of the product codes)

Splash	guard

Accessories

Calibration kit, 15 L or 17 L cylinders, 0.5 LPM flow regulator	CET-8000-CK1
Calibration kit, 34 L, 58 L, 75 L, or 103 L cylinders, 0.5 LPM flow regulator	CET-7150-CK1
Metal protective guard, small, 16 gauge, galvanized metal guards for transmitters	SCS-8000-RSG

Product Codes

PET BACnet® Transmitters

-		
_	PET series, single channel, ammonia (NH ₃), 0 - 500 ppm	PET-EAM
_	PET series, single channel, carbon monoxide (CO), 0 - 200 ppm	PET-TCO
_	PET series, single channel, combustible gases (solid state), 0 - 50% LEL	PET-SCB
	PET series, single channel, ethylene (C_2H_4), 0 - 2,000 ppm	PET-EC4
	PET series, single channel, formaldehyde (CH ₂ O), 0 - 10 ppm	PET-EFO
	PET series, single channel, hydrogen (H,), 0 - 2,000 ppm	PET-EH2
	PET series, single channel, methane (CH_{a}), 0 - 50% LEL	PET-SCB
	PET series, single channel, nitrogen dioxide (NO ₂), 0 - 10 ppm	PET-END
	PET series, single channel, nitric oxide (NO), 0 - 100 ppm	PET-ENO
	PET series, single channel, oxygen (0,), 0 - 25% volume	PET-002
	PET series, single channel, propane $(\tilde{C}_{s}H_{s})$, 0 - 50% LEL	PET-SCB
	PET series, single channel, refrigerants (R12, R22, R134A, R401A, R402A, R404A, R407C, R410A, R422A, R422D, R438A, R507), 0 - 2,000 ppm	PET-SR2
	PET series, single channel, sulphur dioxide (SO ₃), 0 - 20 ppm	PET-ESO
	PET series, single channel, TVOCs (solid state), 0 - 500 ppm	PET-SOS
	PET series, dual channel, ammonia (NH ₂) & nitric oxide (NO)	PET-EAM-ENO
	PET series, dual channel, ammonia (NH,) & nitrogen dioxide (NO,)	PET-EAM-END
	PET series, dual channel, ammonia (NH ₂) & sulphur dioxide (SO ₂)	PET-EAM-ESO
	PET series, dual channel, ammonia (NH,) & oxygen (0,)	PET-EAM-002
	PET series, dual channel, carbon monoxide (CO) & nitric oxide (NO)	PET-TCO-ENO
	PET series, dual channel, carbon monoxide (CO) & nitrogen dioxide (NO,)	PET-TCO-END
	PET series, dual channel, carbon monoxide (CO) & sulphur dioxide (SO,)	PET-TCO-ESO
	PET series, dual channel, carbon monoxide (CO) & oxygen (0,)	PET-TCO-002
	PET series, dual channel, ethylene (C_1H_4) & nitric oxide (NO)	PET-EC4-ENO
	PET series, dual channel, ethylene (C, H_a) & nitrogen dioxide (NO ₃)	PET-EC4-END
	PET series, dual channel, ethylene $(C_{2}H_{a})$ & sulphur dioxide (SO_{3})	PET-EC4-ESO
	PET series, dual channel, ethylene (C,H,) & oxygen (0,)	PET-EC4-002
	PET series, dual channel, formaldehyde (CH,O) & nitric oxide (NO)	PET-EFO-ENO
	PET series, dual channel, formaldehyde (CH,0) & nitrogen dioxide (NO,)	PET-EFO-END
	PET series, dual channel, formaldehyde (CH,O) & sulphur dioxide (SO,)	PET-EFO-ESO
	PET series, dual channel, formaldehyde (CH,0) & oxygen (0,)	PET-EFO-002
	PET series, dual channel, hydrogen (H ₂) & nitric oxide (NO)	PET-EH2-ENO
	PET series, dual channel, hydrogen (H,) & nitrogen dioxide (NO,)	PET-EH2-END
	PET series, dual channel, hydrogen (H,) & sulphur dioxide (NO,)	PET-EH2-ESO
	PET series, dual channel, hydrogen (H,) & oxygen (O,)	PET-EH2-002
	PET series, dual channel, nitric oxide (NO) & nitrogen dioxide (NO,)	PET-ENO-END
	PET series, dual channel, nitric oxide (NO) & sulphur dioxide (SO,)	PET-ENO-ESO
	PET series, dual channel, nitric oxide (NO) & oxygen (0,)	PET-ENO-002
_	PET series, dual channel, nitrogen dioxide (NO ₂) & sulphur dioxide (SO ₂)	PET-END-ESO
_	PET series, dual channel, nitrogen dioxide (NO ₂) & oxygen (O ₂)	PET-END-002
_	PET series, dual channel, oxygen (0,) & sulphur dioxide (S0,)	PET-002-ES0

Ν
R
А
W
S

Accessories

Calibration kit, 15 L or 17 L cylinders, 0.5 LPM flow regulator	CET-8000-CK1
Calibration kit, 34 L, 58 L, 75 L, or 103 L cylinders, 0.5 LPM flow regulator	CET-7150-CK1
Metal protective guard, small, 16 gauge, galvanized metal guards for transmitters	SCS-8000-RSG

PORTABLE INDOOR AIR QUALITY MONITORS

YESAIR Eight Channel Air Quality Monitor	
YESAIR, temperature & RH sensors, internal pump, rechargeable batteries (3 x AA	VECAID
NiMH), battery charger, capacity for 5 gas sensors	TEJAIN
YESAIR-D, temperature & RH sensors, diffuser cap, rechargeable batteries (3 x AA	
NiMH), battery charger, capacity for 5 gas sensors	TESAIN-D
Options (to be added to the end of the product codes above)	
Ammonia (NH ₃) electrochemical, 0 - 50 ppm	PNP-H
Arsine (AsH ₃) electrochemical, 0 - 2 ppm	PNP-R
Carbon dioxide (CO ₂) infrared, 0 - 5,000 ppm	PNP-A+
Carbon dioxide (CO ₂) infrared, 0 - 10,000 ppm	PNP-A1
Carbon dioxide (CO ₂) infrared, 0 - 20% volume	PNP-A2
Carbon dioxide (CO ₃) infrared, 0 - 5% volume	PNP-B
Carbon dioxide (CO ₂) infrared, 0 - 100% volume	PNP-B1
Carbon monoxide (CO) electrochemical, 0 - 50 ppm	PNP-C
Carbon monoxide (CO) electrochemical, 0 - 50 ppm	
(H, compensated for use in H, background)	PNP-CI
Chlorine (Cl ₂) electrochemical, 0 - 5 ppm	PNP-I
Chlorine dioxide (ClO ₃), electrochemical, 0 - 1 ppm	PNP-J
Combustibles (catalytic), 0 - 100% LEL	PNP-X
Ethylene (C,H ₄), 0 - 500 ppm	PNP-E1
Ethylene oxide (ETO), 0 - 20 ppm	PNP-E2
Fluorine (F ₃) electrochemical, 0 - 2 ppm	PNP-S
Formaldehyde (CH,O) electrochemical, 0 - 10 ppm	PNP-Q
Hydrogen (H.) electrochemical, 0 - 1,000 ppm	PNP-K
Hydrogen chloride (HCl) electrochemical, 0 - 30 ppm	PNP-M
Hydrogen cyanide (HCN) electrochemical, 0 - 100 ppm	PNP-N
Hydrogen fluoride (HF) electrochemical, 0 - 10 ppm	PNP-0

Product Codes

Hydrogen sulphide (H ₂ S) electrochemical, 0 - 50 ppm	PNP-L
Nitric oxide (NO) electrochemical, 0 - 100 ppm	PNP-E
Nitrogen dioxide (NO ₂) electrochemical, 0 - 5 ppm	PNP-D
Oxygen (0,) electrochemical, 0 - 25% volume	PNP-F
Ozone (0 ₃) electrochemical, 0 - 1 ppm	PNP-G
Phosphine (PH ₃) electrochemical, 0 - 1 ppm	PNP-V
Silane (SiH ₄) electrochemical, 0 - 1 ppm	PNP-W
Sulphur dioxide (SO ₂) electrochemical, 0 - 20 ppm	PNP-P
TVOCs (PID), 0 - 300 ppm	PNP-Y+
TVOCs (PID), 0 - 50 ppm	PNP-Z+
External mounted nickel metal hydride pack	YESAIR BATT OPTION

Accessories

Hard shell carrying case for YESAIR	6010.20
YES logger package, 2 GB flash card, USB cable, YES Viewer software, SD flash card reader	YESAIR-LGRPKG
Handheld probe 10" with 30" of sample hose	YES-HHPROBE-10
External lead acid battery, in carrying case w charger	YES-AIR BATT EXT
YES Viewer information logging software CD	YES-SFTWRE

YES Plus LGA Fifteen Channel Air Quality Monitor

YES Plus LGA, temperature, RH sensors, internal pump, inline filter, rechargeable bat-	
tery, internal data logging, capacity for 12 gas sensors	TES PIUS LGA
Options (to be added to the end of the product codes above)	
Ammonia (NH ₃) electrochemical, 0 - 50 ppm	PNP-H
Arsine (AsH ₃) electrochemical, 0 - 2 ppm	PNP-R
Carbon dioxide (CO ₂) infrared, 0 - 5,000 ppm	PNP-A+
Carbon dioxide (CO ₂) infrared, 0 - 10,000 ppm	PNP-A1
Carbon dioxide (CO ₂) infrared, 0 - 20% volume	PNP-A2
Carbon dioxide (CO ₂) infrared, 0 - 5% volume	PNP-B
Carbon dioxide (CO ₂) infrared, 0 - 100% volume	PNP-B1
Carbon monoxide (CO) electrochemical, 0 - 50 ppm	PNP-C
Carbon monoxide (CO) electrochemical, 0 - 50 ppm	
(H ₂ compensated for use in H ₂ background)	rinr-CI
Chlorine (Cl ₂) electrochemical, 0 - 5 ppm	PNP-I
Chlorine dioxide (ClO ₂), electrochemical, 0 - 1 ppm	PNP-J
Combustibles (catalytic), 0 - 100% LEL	PNP-X
Ethylene (C,H₄), 0 - 500 ppm	PNP-E1
Ethylene oxide (ETO), 0 - 20 ppm	PNP-E2
Fluorine (F,) electrochemical, 0 - 2 ppm	PNP-S

Formaldehyde (CH ₂ 0) electrochemical, 0 - 10 ppm	PNP-Q
Hydrogen (H _.) electrochemical, 0 - 1,000 ppm	PNP-K
Hydrogen chloride (HCI) electrochemical, 0 - 30 ppm	PNP-M
Hydrogen cyanide (HCN) electrochemical, 0 - 100 ppm	PNP-N
Hydrogen fluoride (HF) electrochemical, 0 - 10 ppm	PNP-0
Hydrogen sulphide (H ₂ S) electrochemical, 0 - 50 ppm	PNP-L
Nitric oxide (NO) electrochemical, 0 - 100 ppm	PNP-E
Nitrogen dioxide (NO ₂) electrochemical, 0 - 5 ppm	PNP-D
Oxygen (0,) electrochemical, 0 - 25% volume	PNP-F
Ozone (0,) electrochemical, 0 - 1 ppm	PNP-G
Phosphine (PH ₃) electrochemical, 0 - 1 ppm	PNP-V
Silane (SiH ₄) electrochemical, 0 - 1 ppm	PNP-W
Sulphur dioxide (SO ₂) electrochemical, 0 - 20 ppm	PNP-P
TVOCs (PID), 0 - 300 ppm	PNP-Y+
TVOCs (PID), 0 - 50 ppm	PNP-Z+

Accessories

_

Hard shell carrying case for YES Plus LGA	718
YES logger package, 2 GB flash card, USB cable, YES Viewer software, SD flash card reader	YESAIR-LGRPKG
Handheld probe 10" with 30" of sample hose	YES-HHPROBE-10
YES Viewer information logging software CD	YES-SFTWRE

YESAIR Junior Essential Air Quality Monitor

YESAIR Junior, carbon dioxide (CO ₂), temperature & relative numidity sensors plus internal data logging, YES Viewer software, USB cable & carrying case	YESAIR Junior
Accessories	
YES logger package, 2 GB flash card, USB cable, YES Viewer software,	YESAIR-LGRPKG

SD flash card reader	
YES Viewer information logging software CD	YES-SFTWRE

YESDUST Affordable Particulate Sensor

YESDUST, particulate sensor, 1 - 10 micro meters	YESDUST

Notes

Notes

Lai Chi Kok [Hong Kong, China] Canada Post [across BC] Revenue Canada Surrey Taxation Centre [Surrey, BC]/ British Columbia Ambulance Service [across BC]/ Insurance Corporation of British Columbia [across BC] Canada Place [Vancouver, BC] Centre for Disease Control [Vancouver, BC] | Envirotest Canada [Across Vancouver Lower Mainland] | Hong Kong International Airport [Hong Kong, China] | International Bio Recovery [North Vancouver, BC] | Labatt Brewery [New Westminster, BC] Purolator [across Canada & USA] | Johns Hopkins Hospital [Baltimore, MD] | Vancouver General Hospital Hyperbaric Chamber [Vancouver, BC] | Fedex [across Canada & USA] | University of Victoria [Victoria, BC] CN Railway [Richmond, BC] | Lennox Industries [Carrollton, TX] | Pacific Centre [Vancouver, BC] Saskatoon Airport [Saskatoon, SK] | Lulu Island Wastewater Treatment Plant [Richmond, BC] Canadian Coast Guard [Victoria, BC] BC Ferries Horseshoe Bay [North Vancouver, BC] Canadian Springs [Richmond, BC] | Canadian Food Inspection Agency [Burnaby, BC] | Toronto International Airport [Toronto, ON] | Metro Commercial Building [Seattle, WA] | City Centre Mall [Edmonton, AB] Coquitlam Aquatic [Coquitlam, BC] | Costco [Burnaby, BC] | University of British Columbia [Vancouver, BC] | Lucerne Foods [Lethbridge, AB] | Halliburton [Offshore Rig, NL] | Canadian Forces Base [Comox & Esquimalt, BC] | Metropolis at Metrotown [Burnaby, BC] | Seaspan International [N Vancouver, BC] | Marriott Hotel [Whistler, BC] | Harbor Yard Arena [Bridgeport, CT] | UBC TRIUMF [Vancouver, BC]... ...and many more.

Critical Environment Technologies Canada Inc.

Unit 145, 7391 Vantage Way, Delta, BC, V4G 1M3, Canada Toll Free: +1.877.940.8741 Tel: +1.604.940.8741 Fax: +1.604.940.8745

www.critical-environment.com

